[1]
Y.N. Lee, Minkowycz, W. Heat transfer characteristics of the annulus of two coaxial cylinders with one cylinder rotating, International Journal of Heat and Mass Transfer. 32 (1989) 711-72.
DOI: 10.1016/0017-9310(89)90218-4
Google Scholar
[2]
K. Thriveni, B. Mahanthesh, Sensitivity analysis of nonlinear radiated heat transport of hybrid nanoliquid in an annulus subjected to the nonlinear Boussinesq approximation, Journal of Thermal Analysis and Calorimetry. (2019) 1-20.
DOI: 10.1007/s10973-020-09596-w
Google Scholar
[3]
J.M. Lopez, F. Marques, M. Avila, Conductive and convective heat transfer in fluid flows between differentially heated and rotating cylinders, International Journal of Heat and Mass Transfer. 90 (2015) 959-967.
DOI: 10.1016/j.ijheatmasstransfer.2015.07.026
Google Scholar
[4]
S. Grossmann, D. Lohse, C. Sun, High-Reynolds Number Taylor-Couette Turbulence, Annual review of fluid mechanics. 48 (2016) 53-80.
DOI: 10.1146/annurev-fluid-122414-034353
Google Scholar
[5]
Z. Zhou, W.T. Wu, M. Massoudi, Fully developed flow of a drilling fluid between two rotating cylinders, Appl. Math. Comput. 281 (2016) 266–277.
DOI: 10.1016/j.amc.2016.01.059
Google Scholar
[6]
D.-D. Dang, X.T. Pham, P. Labbé, F. Torriano, J.-F. Morissette, C. Hudon, CFD analysis of turbulent convective heat transfer in a hydro-generator rotor-stator system, Applied Thermal Engineering. 130 (2018) 17–28.
DOI: 10.1016/j.applthermaleng.2017.11.034
Google Scholar
[7]
B. Mahanthesh, N.S. Shashikumar, G. Lorenzini, Heat transfer enhancement due to nanoparticles, magnetic feld, thermal and exponential space-dependent heat source aspects in nanoliquid fow past a stretchable spinning disk, Journal of Thermal Analysis and Calorimetry. (2019) 1-9.
DOI: 10.1007/s10973-020-09927-x
Google Scholar
[8]
W. Lian, W. Chang, Y. Xuan, Numerical investigation on flow and thermal features of a rotating heat pipe, Applied Thermal Engineering, 101 (2016) 92–100.
DOI: 10.1016/j.applthermaleng.2016.02.110
Google Scholar
[9]
J.M. Jalil, A.J.O. Hanfash, M.R. Abdul-Mutaleb, Experimental and numerical study of axial turbulent fluid flow and heat transfer in a rotating annulus, Arab. J. Sci. Eng. 41 (2016) 1857-1865.
DOI: 10.1007/s13369-015-1909-1
Google Scholar
[10]
C. Gazley, Heat transfer characteristics of rotating and axial flow between concentric cylinders, Trans. ASME, J. Heat Transfer. 114 (1992) 589-597.
DOI: 10.1115/1.4012258
Google Scholar
[11]
S. R.M. Gardiner, R.H. Sabersky, Heat transfer in an annular gap, International Journal of Heat and Mass Transfer. 21 (1978) 1459-1466.
DOI: 10.1016/0017-9310(78)90002-9
Google Scholar
[12]
M. Bouafia, Y. Bertin, J.B. Saulnier, P. Robert, Analyse expérimentale des transferts de chaleur en espace annulaire étroit et rainuré avec cylindre intérieur tournant, International Journal of Heat and Mass Transfer. 41(1998) 1279-1291.
DOI: 10.1016/s0017-9310(97)00317-7
Google Scholar
[13]
I. Peres, A. Ziouchi, Y. Bertin, Characterization of heat exchanges in a notched or smooth annular space with the rotating inner cylinder, SFT Congress. (1994) 170-177.
Google Scholar
[14]
M. Bouafia, A. Ziouchi , Y. Bertin, J.B. Saulnier, Etude expérimentale et numérique des transferts de chaleur en espace annulaire sans débit axial et avec cylindre intérieur tournant, International Journal of Thermal Sciences. 38 (1999) 547-559.
DOI: 10.1016/s0035-3159(99)80035-x
Google Scholar
[15]
S. Neti, A.S. Warnock, E.K. Levy, K.S. Kannan, Computation of Laminar Heat Transfer in Distinguished Coils, Journal of Heat Transfer. 107 (1985) 575-582.
DOI: 10.1115/1.3247463
Google Scholar
[16]
E. Levy, S. Neti, G. Brown, F. Bayat, V. Kadambi, Laminar heat transfer and pressure drop in a rectangular duct rotating about a parallel axis, Journal of Heat Transfer. 108 (1986) 350-356.
DOI: 10.1115/1.3246928
Google Scholar
[17]
C.Y. Soong, W.M. Yan, Development of secondary flow and convective heat transfer in isothermal / iso- rectangular flow ducts rotating on a parallel axis, International Journal of Heat and Mass Transfer. 42 (1999) 497-510.
DOI: 10.1016/s0017-9310(98)00199-9
Google Scholar
[18]
C. Micallef, S.J. Pickering, K. Simmons, K. Bradley, Improvements in air flow in the end region of a large totally enclosed fan cooled induction motor, IEEE International Conference on Electrical Machines and Drives. (2005) 579-584.
DOI: 10.1109/iemdc.2005.195781
Google Scholar
[19]
T.M. Jeng, S.C. Tzeng, C.H. Lin, Heat transfer enhancement of Taylor- Couette – Poiseuille flow in an annulus by longitudinal displacement ribs on the inner cylinder, International Journal of Heat and Mass Transfer. 50 (2007) 381-390.
DOI: 10.1016/j.ijheatmasstransfer.2006.06.005
Google Scholar
[20]
E. Fenot, A. Dorignac, G. Giret, Lalizel, Convective heat transfer in the entry region of an annular channel with slotted rotating inner cylinder, Applied Thermal Engineering. 54(2013) 345-358.
DOI: 10.1016/j.applthermaleng.2012.10.039
Google Scholar
[21]
Y. Sommerer, G. Lauriat, Numerical study of steady forced convection in a grooved annulus using a design of experiments, Journal of Heat Transfer. 123 (2001) 837-848.
DOI: 10.1115/1.1388299
Google Scholar
[22]
N. Lancial, F. Torriano, F. Beaubert, S. Harmand, Taylor- Couette - Poiseuilleflow and heat transfer in an annular channel with a slotted rotor, International Journal of Thermal Sciences. 112 (2017) 92-103.
DOI: 10.1016/j.ijthermalsci.2016.09.022
Google Scholar
[23]
X. Zhu, R. Ostilla-Mónico, R. Verzicco, D. Lohse, Direct numerical simulation of Taylor- Couette flow with grooved walls: torque scaling and flow structure, Journal of Fluid Mechanics. 794 (2016) 746-774.
DOI: 10.1017/jfm.2016.179
Google Scholar
[24]
Y. Attou, A.Z. Dellil, A. Meghdir, Impact of the grooves on the enhancement of heat transfer in an annular space of a rotor-stator, International Journal of Heat and Technology. 36 (2018) 1283-1291.
DOI: 10.18280/ijht.360417
Google Scholar
[25]
Y. Attou, Impact of the Geometrical Form on the Enhancement of Heat Transfer in Grooved Rotor of Electrical Machines, Second International Conference on Embedded & Distributed Systems (EDiS). (2020) 64-68.
DOI: 10.1109/edis49545.2020.9296468
Google Scholar
[26]
A. Nouri-Borujerdi, M.E. Nakhchi, Prediction of local shear stress and heat transfer between internal rotating cylinder and longitudinal cavities on stationary cylinder with various shapes, International Journal of Thermal Sciences. 138 (2019) 512-520.
DOI: 10.1016/j.ijthermalsci.2019.01.016
Google Scholar
[27]
A. Nouri-Borujerdi, M.E. Nakhchi, Optimization of the heat transfer coefficient and pressure drop of Taylor- Couette - Poiseuille flows between an inner and outer roll cylinder and an outer grooved stationary cylinder, International Journal of Heat and Mass Transfer. 108 (2017) 1449 1459.
DOI: 10.1016/j.ijheatmasstransfer.2017.01.014
Google Scholar
[28]
A. Nouri-Borujerdi, M.E. Nakhchi, Friction factor and Nusselt number in annular flows with smooth and slotted surface, Heat and Mass Transfer. 55 (2018) 645-653.
DOI: 10.1007/s00231-018-2445-9
Google Scholar
[29]
A. Nouri-Borujerdi, M.E. Nakhchi, Experimental study of convective heat transfer in the annulus of an annulus with an external grooved surface, Exp Thermal Fluid Sci. 98(2018) 557-562.
DOI: 10.1016/j.expthermflusci.2018.06.025
Google Scholar
[30]
S. Patankar, D.A. Spalding, Computation procedure for heat, mass and momentum transfer in three dimensional parabolic flows, Int. Heat Mass Transfer, 15 (1975) 1787-1806.
DOI: 10.1016/0017-9310(72)90054-3
Google Scholar
[31]
Fluent, Inc., Turbulence Modelling, Fluent 6.1 Documentation, Chapters 7, 9, 12 and 13 (2003).
Google Scholar