[1]
Chadha K, Tian Y, Spray JG, Aranas Jr C. Effect of Annealing Heat Treatment on the Microstructural Evolution and Mechanical Properties of Hot Isostatic Pressed 316L Stainless Steel Fabricated by Laser Powder Bed Fusion. Metals. 2020;10:753.
DOI: 10.3390/met10060753
Google Scholar
[2]
Chadha K, Tian Y, Bocher P, Spray JG, Aranas C. Microstructure Evolution, Mechanical Properties and Deformation Behavior of an Additively Manufactured Maraging Steel. Materials. 2020;13:2380.
DOI: 10.3390/ma13102380
Google Scholar
[3]
Wang X, Muñiz-Lerma JA, Sánchez-Mata O, Attarian Shandiz M, Brochu M. Microstructure and mechanical properties of stainless steel 316L vertical struts manufactured by laser powder bed fusion process. Materials Science and Engineering: A. 2018;736:27-40.
DOI: 10.1016/j.msea.2018.08.069
Google Scholar
[4]
Palad R, Tian Y, Chadha K, Rodrigues S, Aranas C. Microstructural features of novel corrosion-resistant maraging steel manufactured by laser powder bed fusion. Materials Letters. 2020; 275: 128026.
DOI: 10.1016/j.matlet.2020.128026
Google Scholar
[5]
Tian Y, Palad R, Jiang L, Dorin T, Chadha K, Aranas C. The effect of heat treatments on mechanical properties of M789 steel fabricated by laser powder bed fusion. Journal of Alloys and Compounds. 2021;885:161033.
DOI: 10.1016/j.jallcom.2021.161033
Google Scholar
[6]
Smallman RE, Ngan A. Physical metallurgy and advanced materials: Elsevier; (2011).
Google Scholar
[7]
Viswanathan U, Dey G, Asundi M. Precipitation hardening in 350 grade maraging steel. Metallurgical Transactions A. 1993;24:2429-42.
DOI: 10.1007/bf02646522
Google Scholar
[8]
Kürnsteiner P, Wilms MB, Weisheit A, Barriobero-Vila P, Gault B, Jägle EA, et al. In-process precipitation during laser additive manufacturing investigated by atom probe tomography. Microscopy and Microanalysis. 2017;23:694-5.
DOI: 10.1017/s1431927617004135
Google Scholar
[9]
Turk C, Zunko H, Aumayr C, Leitner H, Kapp M. Advances in maraging steels for additive manufacturing. BHM Berg-und Hüttenmännische Monatshefte. 2019;164:112-6.
DOI: 10.1007/s00501-019-0835-z
Google Scholar
[10]
Avelino AF, Araújo WS, Dias DF, dos Santos LPM, Correia AN, de Lima-Neto P. Corrosion investigation of the 18Ni 300 grade maraging steel in aqueous chloride medium containing H2S and CO2. Electrochimica Acta. 2018;286:339-49.
DOI: 10.1016/j.electacta.2018.08.042
Google Scholar
[11]
Godec M, Podgornik B, Kocijan A, Donik Č, Balantič DS. Use of plasma nitriding to improve the wear and corrosion resistance of 18Ni-300 maraging steel manufactured by selective laser melting. Scientific reports. 2021;11:1-12.
DOI: 10.1038/s41598-021-82572-y
Google Scholar
[12]
Chadha K, Tian Y, Pasco J, Aranas C. Dual-metal laser powder bed fusion of iron- and cobalt-based alloys. Materials Characterization. 2021; 178:111285.
DOI: 10.1016/j.matchar.2021.111285
Google Scholar
[13]
Suryawanshi J, Prashanth K, Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. Journal of alloys and compounds. 2017;725:355-64.
DOI: 10.1016/j.jallcom.2017.07.177
Google Scholar
[14]
Chadha K, Ahmed Z, Aranas C, Shahriari D, Jahazi M. Influence of strain rate on dynamic transformation of austenite in an as-cast medium-carbon low-alloy steel. Materialia. 2018;1:155-67.
DOI: 10.1016/j.mtla.2018.04.006
Google Scholar
[15]
Doherty RD. Recrystallization and texture. Progress in Materials Science. 1997; 42:39-58.
Google Scholar