[1]
C. Tropea, R. Gackstatter, The flow over two-dimensional surface-mounted obstacles at low Reynolds numbers. (1985) 489-494.
DOI: 10.1115/1.3242518
Google Scholar
[2]
M. Kanoun, M. Baccar, M. Mseddi, Computational analysis of flow and heat transfer in passages with attached and detached rib arrays, J. Enhanc. Heat Transf. 18 (2) (2011).
DOI: 10.1615/jenhheattransf.v18.i2.70
Google Scholar
[3]
M. Sheikholeslami, New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media, Comput. Methods Appl. Mech. Eng. 344 (2019) 319–333.
DOI: 10.1016/j.cma.2018.09.044
Google Scholar
[4]
M.A. Ahmed, N.H. Shuaib, M.Z. Yusoff, Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid, Int. J. Heat Mass Transf. 55 (21-22) (2012) 5891–5898.
DOI: 10.1016/j.ijheatmasstransfer.2012.05.086
Google Scholar
[5]
M.J. Alshukri, R.F. Hamad, A.A. Eidan, A. Al-Manea, Convective heat transfer analysis in turbulent nanofluid flow through a rectangular channel with staggered obstacles: A numerical simulation, Int. J. Thermofluids 23 (2024) 100753.
DOI: 10.1016/j.ijft.2024.100753
Google Scholar
[6]
S. Kumar, A.D. Kothiyal, M.S. Bisht, A. Kumar, Numerical analysis of thermal hydraulic performance of Al2O3–H2O nanofluid flowing through a protrusion obstacles square mini channel, Case Stud. Therm. Eng. 9 (2017) 108–121.
Google Scholar
[7]
M.L.G. Ho, C.S. Oon, L.L. Tan, Y. Wang, Y.M. Hung, A review on nanofluids coupled with extended surfaces for heat transfer enhancement, Results Eng. 17 (2023) 100957.
DOI: 10.1016/j.rineng.2023.100957
Google Scholar
[8]
F.Z. Barhdadi, I. Jamal, K. Amghar, S. Daoudi, Numerical analysis of heat transfer in a solar collector submitted the flow of nanofluid, In Int. Conf. Electron. Eng. Renew. Energy Syst. Singapore: Springer Nature Singapore (2022, May) 1035–1044.
DOI: 10.1007/978-981-19-6223-3_105
Google Scholar
[9]
M. Hatami, D. Jing, Evaluation of wavy direct absorption solar collector (DASC) performance using different nanofluids, J. Mol. Liq. 229 (2017) 203–211.
DOI: 10.1016/j.molliq.2016.12.072
Google Scholar
[10]
M.S. Fard, M. Rahimi, Y. Pahamli, H. Samadi, R. Bahrampoury, Cooling performance of sliver solar cells in low concentration PV system with ribbed-groove mini-channel heat sink, Int. J. Therm. Sci. 200 (2024) 108955.
DOI: 10.1016/j.ijthermalsci.2024.108955
Google Scholar
[11]
M. Khoshvaght-Aliabadi, M. Salami, Turbulent flow of Al2O3-water nanofluid through plate-fin heat exchanger (PFHE) with offset-strip channels, Therm. Sci. Eng. Prog. 6 (2018) 164–176.
DOI: 10.1016/j.tsep.2018.04.001
Google Scholar
[12]
O.A. Alawi, H.M. Kamar, A.R. Mallah, H.A. Mohammed, S.N. Kazi, N.A.C. Sidik, G. Najafi, Nanofluids for flat plate solar collectors: Fundamentals and applications, J. Clean. Prod. 291 (2021) 125725.
DOI: 10.1016/j.jclepro.2020.125725
Google Scholar
[13]
R. Maithani, A. Kumar, S. Sharma, B. Rawat, Thermal analysis of rectangular channel having Al2O3 nanofluid medium, Mater. Today: Proc. (2023).
DOI: 10.1016/j.matpr.2023.01.220
Google Scholar
[14]
P. Soleymani, Y. Ma, E. Saffarifard, R. Mohebbi, M. Babaie, N. Karimi, S. Saedodin, Numerical investigation on turbulent flow, heat transfer, and entropy generation of water-based magnetic nanofluid flow in a tube with hemisphere porous under a uniform magnetic field, Int. Commun. Heat Mass Transf. 137 (2022) 106308.
DOI: 10.1016/j.icheatmasstransfer.2022.106308
Google Scholar
[15]
F. Karami, A.A.A. Arani, O.A. Akbari, F. Pourfattah, D. Toghraie, Numerical study of location and depth of rectangular grooves on the turbulent heat transfer performance and characteristics of CuO-water nanofluid flow, Heliyon 9 (3) (2023).
DOI: 10.1016/j.heliyon.2023.e14239
Google Scholar
[16]
M.H. Hekmat, S. Saharkhiz, Effect of nanofluid flows on heat transfer intensification of corrugated channels with an oscillating blade, Chem. Eng. Process.-Process Intens. 179 (2022) 109072.
DOI: 10.1016/j.cep.2022.109072
Google Scholar
[17]
O. Manca, S. Nardini, D. Ricci, A numerical study of nanofluid forced convection in ribbed channels, Appl. Therm. Eng. 37 (2012) 280–292.
DOI: 10.1016/j.applthermaleng.2011.11.030
Google Scholar
[18]
F.L. Rashid, H.I. Mohammed, A. Dulaimi, M.A. Al-Obaidi, P. Talebizadehsardari, S. Ahmad, A. Ameen, Analysis of heat transfer in various cavity geometries with and without nano-enhanced phase change material: A review, Energy Rep. 10 (2023) 3757–3779.
DOI: 10.1016/j.egyr.2023.10.036
Google Scholar
[19]
F. Keramat, P. Dehghan, M. Mofarahi, C.H. Lee, Numerical analysis of natural convection of alumina–water nanofluid in H-shaped enclosure with a V-shaped baffle, J. Taiwan Inst. Chem. Eng. 111 (2020) 63–72.
DOI: 10.1016/j.jtice.2020.04.006
Google Scholar
[20]
M. Gürdal, K. Arslan, E. Gedik, A.A. Minea, Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review, Renew. Sustain. Energy Rev. 162 (2022) 112453.
DOI: 10.1016/j.rser.2022.112453
Google Scholar
[21]
İ. Özcan, A. Ozsoy, A.E. Özgür, M. Karaboyaci, An investigation of serial connected U-pipe evacuated tube solar collector performance using TiO2/Water nanofluid, Appl. Therm. Eng. 233 (2023) 121088.
DOI: 10.1016/j.applthermaleng.2023.121088
Google Scholar
[22]
F.Z. Barhdadi, I. Jamal, K. Amghar, S. Daoudi, R. Yahiaoui, K. Ghoumid, Numerical investigation of different transverse rib shapes on thermal convection in a channel filled with nanofluid, Int. J. Thermofluids (2024) 100872.
DOI: 10.1016/j.ijft.2024.100872
Google Scholar
[23]
H.A. Mohammed, A.K. Abbas, J.M. Sheriff, Influence of geometrical parameters and forced convective heat transfer in transversely corrugated circular tubes, Int. Commun. Heat Mass Transf. 44 (2013) 116–126.
DOI: 10.1016/j.icheatmasstransfer.2013.02.005
Google Scholar
[24]
S. Eiamsa-ard, P. Promvonge, Numerical study on heat transfer of turbulent channel flow over periodic grooves, Int. Commun. Heat Mass Transf. 35 (7) (2008) 844–852.
DOI: 10.1016/j.icheatmasstransfer.2008.03.008
Google Scholar
[25]
I. Jamal, F.Z. Barhdadi, K. Amghar, S. Daoudi, R. Yahiaoui, K. Ghoumid, Enhancing performance in solar air channels: A numerical analysis of turbulent flow and heat transfer with novel shaped baffles, Appl. Therm. Eng. 251 (2024) 123561.
DOI: 10.1016/j.applthermaleng.2024.123561
Google Scholar
[26]
İ. Özcan, A. Ozsoy, A.E. Özgür, M. Karaboyaci, An investigation of serial connected U-pipe evacuated tube solar collector performance using TiO2/Water nanofluid, Appl. Therm. Eng. 233 (2023) 121088.
DOI: 10.1016/j.applthermaleng.2023.121088
Google Scholar
[27]
I. Omle, A.H. Askar, E. Kovács, Impact of wall roughness elements type and height on heat transfer inside a cavity, Pollack Period. (2024).
DOI: 10.1556/606.2024.00986
Google Scholar
[28]
S. Chtourou, H. Djemal, M. Kaffel, M. Baccar, Thermal efficiency and performance enhancement examination in a new PHE design, Case Stud. Therm. Eng. 28 (2021) 101502.
DOI: 10.1016/j.csite.2021.101502
Google Scholar
[29]
J.D. Anderson, Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill, 1995.
Google Scholar
[30]
F.P. Incropera, D.P. DeWitt, Introduction to Heat Transfer, Wiley, 1990.
Google Scholar
[31]
A.S. Navaei, H.A. Mohammed, K.M. Munisamy, H. Yarmand, S. Gharehkhani, Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels, Powder Technol. 286 (2015) 332–341.
DOI: 10.1016/j.powtec.2015.06.009
Google Scholar
[32]
A.M. Abed, M.A. Alghoul, K. Sopian, H.A. Mohammed, A.N. Al-Shamani, Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids, Chem. Eng. Process.: Process Intensif. 87 (2015) 88–103.
DOI: 10.1016/j.cep.2014.11.005
Google Scholar
[33]
S.M. Vanaki, H.A. Mohammed, Numerical study of nanofluid forced convection flow in channels using different shaped transverse ribs, Int. Commun. Heat Mass Transf. 67 (2015) 176–188.
DOI: 10.1016/j.icheatmasstransfer.2015.07.004
Google Scholar
[34]
H.A. Mohammed, A.N. Al-Shamani, J.M. Sheriff, Thermal and hydraulic characteristics of turbulent nanofluids flow in a rib–groove channel, Int. Commun. Heat Mass Transf. 39 (10) (2012) 1584–1594.
DOI: 10.1016/j.icheatmasstransfer.2012.10.020
Google Scholar
[35]
R.S. Vajjha, D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transf. 52 (21–22) (2009) 4675–4682.
DOI: 10.1016/j.ijheatmasstransfer.2009.06.027
Google Scholar
[36]
J.C. Maxwell, A treatise on electricity and magnetism, vol. 1, Clarendon Press, 1873.
Google Scholar
[37]
S. Etaig, R. Hasan, N. Perera, Investigation of a new effective viscosity model for nanofluids, Proc. Eng. 157 (2016) 404–413.
DOI: 10.1016/j.proeng.2016.08.383
Google Scholar
[38]
R.S. Vajjha, D.K. Das, D.P. Kulkarni, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, Int. J. Heat Mass Transf. 53 (21–22) (2010) 4607–4618.
DOI: 10.1016/j.ijheatmasstransfer.2010.06.032
Google Scholar
[39]
F.P. Incropera, D.P. Dewitt, T.L. Bergma, A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley, 2007.
Google Scholar
[40]
S. Eiamsa-Ard, P. Promvonge, Thermal characteristics of turbulent rib-grooved channel flows, Int. Commun. Heat Mass Transf. 36 (7) (2009) 705–711.
DOI: 10.1016/j.icheatmasstransfer.2009.03.025
Google Scholar
[41]
F.Z. Barhdadi, I. Jamal, S. Daoudi, K. Amghar, R. Yahiaoui, K. Ghoumid, Smart Strategies for Heat Transfer Enhancement Using Nanofluids with Complex Geometries for Optimal Performance, in: Int. Conf. Smart Med., IoT & Artif. Intell., Springer Nature Switzerland, Cham, 2024, p.91–98.
DOI: 10.1007/978-3-031-66854-8_9
Google Scholar
[42]
A.S. Navaei, H.A. Mohammed, K.M. Munisamy, H. Yarmand, S. Gharehkhani, Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels, Powder Technol. 286 (2015) 332–341.
DOI: 10.1016/j.powtec.2015.06.009
Google Scholar