Numerical Simulation of SiO2/Water Nanofluid Heat Transfer and Turbulent Flow in Rectangular Obstacle Channel

Article Preview

Abstract:

This paper focuses on the influence of obstacles and the use of nanofluid on heat transfer in turbulent flow along the channel. The governing equations were solved utilizing finite volume method. The main objective is to study the variations of the Reynolds number, as well as the a/b ratio, the distance between obstacles, and the volume fraction influencing the Nusselt number and the friction factor. The results indicate that the presence of obstacles in a channel and increase of Reynolds number can increase the heat transfer by inducing the formation of turbulent zones. As well, the use of nanofluids with a volume fraction also proves beneficial for heat transfer due to the increased thermal conductivity of the fluid. These results could have significant industrial and technological importance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-122

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Tropea, R. Gackstatter, The flow over two-dimensional surface-mounted obstacles at low Reynolds numbers. (1985) 489-494.

DOI: 10.1115/1.3242518

Google Scholar

[2] M. Kanoun, M. Baccar, M. Mseddi, Computational analysis of flow and heat transfer in passages with attached and detached rib arrays, J. Enhanc. Heat Transf. 18 (2) (2011).

DOI: 10.1615/jenhheattransf.v18.i2.70

Google Scholar

[3] M. Sheikholeslami, New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media, Comput. Methods Appl. Mech. Eng. 344 (2019) 319–333.

DOI: 10.1016/j.cma.2018.09.044

Google Scholar

[4] M.A. Ahmed, N.H. Shuaib, M.Z. Yusoff, Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid, Int. J. Heat Mass Transf. 55 (21-22) (2012) 5891–5898.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.086

Google Scholar

[5] M.J. Alshukri, R.F. Hamad, A.A. Eidan, A. Al-Manea, Convective heat transfer analysis in turbulent nanofluid flow through a rectangular channel with staggered obstacles: A numerical simulation, Int. J. Thermofluids 23 (2024) 100753.

DOI: 10.1016/j.ijft.2024.100753

Google Scholar

[6] S. Kumar, A.D. Kothiyal, M.S. Bisht, A. Kumar, Numerical analysis of thermal hydraulic performance of Al2O3–H2O nanofluid flowing through a protrusion obstacles square mini channel, Case Stud. Therm. Eng. 9 (2017) 108–121.

Google Scholar

[7] M.L.G. Ho, C.S. Oon, L.L. Tan, Y. Wang, Y.M. Hung, A review on nanofluids coupled with extended surfaces for heat transfer enhancement, Results Eng. 17 (2023) 100957.

DOI: 10.1016/j.rineng.2023.100957

Google Scholar

[8] F.Z. Barhdadi, I. Jamal, K. Amghar, S. Daoudi, Numerical analysis of heat transfer in a solar collector submitted the flow of nanofluid, In Int. Conf. Electron. Eng. Renew. Energy Syst. Singapore: Springer Nature Singapore (2022, May) 1035–1044.

DOI: 10.1007/978-981-19-6223-3_105

Google Scholar

[9] M. Hatami, D. Jing, Evaluation of wavy direct absorption solar collector (DASC) performance using different nanofluids, J. Mol. Liq. 229 (2017) 203–211.

DOI: 10.1016/j.molliq.2016.12.072

Google Scholar

[10] M.S. Fard, M. Rahimi, Y. Pahamli, H. Samadi, R. Bahrampoury, Cooling performance of sliver solar cells in low concentration PV system with ribbed-groove mini-channel heat sink, Int. J. Therm. Sci. 200 (2024) 108955.

DOI: 10.1016/j.ijthermalsci.2024.108955

Google Scholar

[11] M. Khoshvaght-Aliabadi, M. Salami, Turbulent flow of Al2O3-water nanofluid through plate-fin heat exchanger (PFHE) with offset-strip channels, Therm. Sci. Eng. Prog. 6 (2018) 164–176.

DOI: 10.1016/j.tsep.2018.04.001

Google Scholar

[12] O.A. Alawi, H.M. Kamar, A.R. Mallah, H.A. Mohammed, S.N. Kazi, N.A.C. Sidik, G. Najafi, Nanofluids for flat plate solar collectors: Fundamentals and applications, J. Clean. Prod. 291 (2021) 125725.

DOI: 10.1016/j.jclepro.2020.125725

Google Scholar

[13] R. Maithani, A. Kumar, S. Sharma, B. Rawat, Thermal analysis of rectangular channel having Al2O3 nanofluid medium, Mater. Today: Proc. (2023).

DOI: 10.1016/j.matpr.2023.01.220

Google Scholar

[14] P. Soleymani, Y. Ma, E. Saffarifard, R. Mohebbi, M. Babaie, N. Karimi, S. Saedodin, Numerical investigation on turbulent flow, heat transfer, and entropy generation of water-based magnetic nanofluid flow in a tube with hemisphere porous under a uniform magnetic field, Int. Commun. Heat Mass Transf. 137 (2022) 106308.

DOI: 10.1016/j.icheatmasstransfer.2022.106308

Google Scholar

[15] F. Karami, A.A.A. Arani, O.A. Akbari, F. Pourfattah, D. Toghraie, Numerical study of location and depth of rectangular grooves on the turbulent heat transfer performance and characteristics of CuO-water nanofluid flow, Heliyon 9 (3) (2023).

DOI: 10.1016/j.heliyon.2023.e14239

Google Scholar

[16] M.H. Hekmat, S. Saharkhiz, Effect of nanofluid flows on heat transfer intensification of corrugated channels with an oscillating blade, Chem. Eng. Process.-Process Intens. 179 (2022) 109072.

DOI: 10.1016/j.cep.2022.109072

Google Scholar

[17] O. Manca, S. Nardini, D. Ricci, A numerical study of nanofluid forced convection in ribbed channels, Appl. Therm. Eng. 37 (2012) 280–292.

DOI: 10.1016/j.applthermaleng.2011.11.030

Google Scholar

[18] F.L. Rashid, H.I. Mohammed, A. Dulaimi, M.A. Al-Obaidi, P. Talebizadehsardari, S. Ahmad, A. Ameen, Analysis of heat transfer in various cavity geometries with and without nano-enhanced phase change material: A review, Energy Rep. 10 (2023) 3757–3779.

DOI: 10.1016/j.egyr.2023.10.036

Google Scholar

[19] F. Keramat, P. Dehghan, M. Mofarahi, C.H. Lee, Numerical analysis of natural convection of alumina–water nanofluid in H-shaped enclosure with a V-shaped baffle, J. Taiwan Inst. Chem. Eng. 111 (2020) 63–72.

DOI: 10.1016/j.jtice.2020.04.006

Google Scholar

[20] M. Gürdal, K. Arslan, E. Gedik, A.A. Minea, Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review, Renew. Sustain. Energy Rev. 162 (2022) 112453.

DOI: 10.1016/j.rser.2022.112453

Google Scholar

[21] İ. Özcan, A. Ozsoy, A.E. Özgür, M. Karaboyaci, An investigation of serial connected U-pipe evacuated tube solar collector performance using TiO2/Water nanofluid, Appl. Therm. Eng. 233 (2023) 121088.

DOI: 10.1016/j.applthermaleng.2023.121088

Google Scholar

[22] F.Z. Barhdadi, I. Jamal, K. Amghar, S. Daoudi, R. Yahiaoui, K. Ghoumid, Numerical investigation of different transverse rib shapes on thermal convection in a channel filled with nanofluid, Int. J. Thermofluids (2024) 100872.

DOI: 10.1016/j.ijft.2024.100872

Google Scholar

[23] H.A. Mohammed, A.K. Abbas, J.M. Sheriff, Influence of geometrical parameters and forced convective heat transfer in transversely corrugated circular tubes, Int. Commun. Heat Mass Transf. 44 (2013) 116–126.

DOI: 10.1016/j.icheatmasstransfer.2013.02.005

Google Scholar

[24] S. Eiamsa-ard, P. Promvonge, Numerical study on heat transfer of turbulent channel flow over periodic grooves, Int. Commun. Heat Mass Transf. 35 (7) (2008) 844–852.

DOI: 10.1016/j.icheatmasstransfer.2008.03.008

Google Scholar

[25] I. Jamal, F.Z. Barhdadi, K. Amghar, S. Daoudi, R. Yahiaoui, K. Ghoumid, Enhancing performance in solar air channels: A numerical analysis of turbulent flow and heat transfer with novel shaped baffles, Appl. Therm. Eng. 251 (2024) 123561.

DOI: 10.1016/j.applthermaleng.2024.123561

Google Scholar

[26] İ. Özcan, A. Ozsoy, A.E. Özgür, M. Karaboyaci, An investigation of serial connected U-pipe evacuated tube solar collector performance using TiO2/Water nanofluid, Appl. Therm. Eng. 233 (2023) 121088.

DOI: 10.1016/j.applthermaleng.2023.121088

Google Scholar

[27] I. Omle, A.H. Askar, E. Kovács, Impact of wall roughness elements type and height on heat transfer inside a cavity, Pollack Period. (2024).

DOI: 10.1556/606.2024.00986

Google Scholar

[28] S. Chtourou, H. Djemal, M. Kaffel, M. Baccar, Thermal efficiency and performance enhancement examination in a new PHE design, Case Stud. Therm. Eng. 28 (2021) 101502.

DOI: 10.1016/j.csite.2021.101502

Google Scholar

[29] J.D. Anderson, Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill, 1995.

Google Scholar

[30] F.P. Incropera, D.P. DeWitt, Introduction to Heat Transfer, Wiley, 1990.

Google Scholar

[31] A.S. Navaei, H.A. Mohammed, K.M. Munisamy, H. Yarmand, S. Gharehkhani, Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels, Powder Technol. 286 (2015) 332–341.

DOI: 10.1016/j.powtec.2015.06.009

Google Scholar

[32] A.M. Abed, M.A. Alghoul, K. Sopian, H.A. Mohammed, A.N. Al-Shamani, Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids, Chem. Eng. Process.: Process Intensif. 87 (2015) 88–103.

DOI: 10.1016/j.cep.2014.11.005

Google Scholar

[33] S.M. Vanaki, H.A. Mohammed, Numerical study of nanofluid forced convection flow in channels using different shaped transverse ribs, Int. Commun. Heat Mass Transf. 67 (2015) 176–188.

DOI: 10.1016/j.icheatmasstransfer.2015.07.004

Google Scholar

[34] H.A. Mohammed, A.N. Al-Shamani, J.M. Sheriff, Thermal and hydraulic characteristics of turbulent nanofluids flow in a rib–groove channel, Int. Commun. Heat Mass Transf. 39 (10) (2012) 1584–1594.

DOI: 10.1016/j.icheatmasstransfer.2012.10.020

Google Scholar

[35] R.S. Vajjha, D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transf. 52 (21–22) (2009) 4675–4682.

DOI: 10.1016/j.ijheatmasstransfer.2009.06.027

Google Scholar

[36] J.C. Maxwell, A treatise on electricity and magnetism, vol. 1, Clarendon Press, 1873.

Google Scholar

[37] S. Etaig, R. Hasan, N. Perera, Investigation of a new effective viscosity model for nanofluids, Proc. Eng. 157 (2016) 404–413.

DOI: 10.1016/j.proeng.2016.08.383

Google Scholar

[38] R.S. Vajjha, D.K. Das, D.P. Kulkarni, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, Int. J. Heat Mass Transf. 53 (21–22) (2010) 4607–4618.

DOI: 10.1016/j.ijheatmasstransfer.2010.06.032

Google Scholar

[39] F.P. Incropera, D.P. Dewitt, T.L. Bergma, A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley, 2007.

Google Scholar

[40] S. Eiamsa-Ard, P. Promvonge, Thermal characteristics of turbulent rib-grooved channel flows, Int. Commun. Heat Mass Transf. 36 (7) (2009) 705–711.

DOI: 10.1016/j.icheatmasstransfer.2009.03.025

Google Scholar

[41] F.Z. Barhdadi, I. Jamal, S. Daoudi, K. Amghar, R. Yahiaoui, K. Ghoumid, Smart Strategies for Heat Transfer Enhancement Using Nanofluids with Complex Geometries for Optimal Performance, in: Int. Conf. Smart Med., IoT & Artif. Intell., Springer Nature Switzerland, Cham, 2024, p.91–98.

DOI: 10.1007/978-3-031-66854-8_9

Google Scholar

[42] A.S. Navaei, H.A. Mohammed, K.M. Munisamy, H. Yarmand, S. Gharehkhani, Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels, Powder Technol. 286 (2015) 332–341.

DOI: 10.1016/j.powtec.2015.06.009

Google Scholar