[1]
P.R. Mashaei, S.M. Hosseinalipour, N. Bagheri, M. Taheri-Ghazvini, and S. Madani, Simultaneous effect of staggered baffles and dispersed nanoparticles on thermal performance of a cooling channel, Applied Thermal Engineering, 120 (2017) 748-762.
DOI: 10.1016/j.applthermaleng.2017.03.142
Google Scholar
[2]
S. Skullong, S. Kwankaomeng, C. Thianpong, and P. Promvonge, Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators, International Communications in Heat and Mass Transfer. 50 (2014) 34-43.
DOI: 10.1016/j.icheatmasstransfer.2013.11.001
Google Scholar
[3]
P. Promvonge, P. Promthaisong, S. Skullong, Heat transfer augmentation in solar heat exchanger duct with louver-punched V-baffles, Solar Energy. 248 (2022) 103–120.
DOI: 10.1016/j.solener.2022.11.009
Google Scholar
[4]
Y. Lei, F. Zheng, C. Song, & Y. Lyu, Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators, International Communications in Heat and Mass Transfer. 111 (2017) 299-311.
DOI: 10.1016/j.ijheatmasstransfer.2017.03.101
Google Scholar
[5]
R. Kumar, R. Chauhan, M. Sethi, & A. Kumar, Experimental study and correlation development for Nusselt number and friction factor for discretized broken V-pattern baffle solar air channel, Experimental Thermal and Fluid Science. 81 (2017) 56-75.
DOI: 10.1016/j.expthermflusci.2016.10.002
Google Scholar
[6]
H. Olfian, A. Zabihi Sheshpoli, & S. S. Mousavi Ajarostaghi, Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles, Heat Transfer. 49(3) (2020) 1149-1169.
DOI: 10.1002/htj.21656
Google Scholar
[7]
J.L. Li, H.W. Tang, & Y.T. Yang, Numerical simulation and thermal performance optimization of turbulent flow in a channel with multi-V-shaped baffles, International Communications in Heat and Mass Transfer. 92 (2018) 39-50.
DOI: 10.1016/j.icheatmasstransfer.2018.02.004
Google Scholar
[8]
P. Promvonge, & S. Skullong, Enhanced thermal performance in tubular heat exchanger contained with V-shaped baffles, Applied Thermal Engineering. 185 (2021) 116307.
DOI: 10.1016/j.applthermaleng.2020.116307
Google Scholar
[9]
H. Xiao, P. Liu, Z. Liu, & W. Liu, Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles, Renewable Energy. 165 (2021) 14-27.
DOI: 10.1016/j.renene.2020.11.068
Google Scholar
[10]
I. Jamal, F. Z. Barhdadi, K. Amghar, S. Daoudi, R. Yahiaoui, & K. Ghoumid, Enhancing performance in solar air channels: A numerical analysis of turbulent flow and heat transfer with novel shaped baffles, Applied Thermal Engineering. (2024) 123561.
DOI: 10.1016/j.applthermaleng.2024.123561
Google Scholar
[11]
S. K. Sharma, & V. R. Kalamkar, Computational Fluid Dynamics approach in thermo hydraulic analysis of flow in ducts with rib roughened walls–A review, Renewable and Sustainable Energy Reviews. 55 (2016) 756-788.
DOI: 10.1016/j.rser.2015.10.160
Google Scholar
[12]
D. Zheng, X. Wang, & Q. Yuan, The flow and heat transfer characteristics in a rectangular channel with convergent and divergent slit ribs, International Journal of Heat and Mass Transfer. 141 (2019) 464-475.
DOI: 10.1016/j.ijheatmasstransfer.2019.06.060
Google Scholar
[13]
J. Liu, S. Hussain, W. Wang, G. Xie, & B. Sundén, Experimental and numerical investigations of heat transfer and fluid flow in a rectangular channel with perforated ribs, International Communications in Heat and Mass Transfer. 121 (2021) 105083.
DOI: 10.1016/j.icheatmasstransfer.2020.105083
Google Scholar
[14]
Barhdadi, F.Z., Jamal, I., Amghar, K., Daoudi, S., Yahiaoui, R., & Ghoumid, K. (2024). Numerical Investigation of Different Transverse Rib Shapes on Thermal Convection in a Channel Filled with Nanofluid. International Journal of Thermofluids, 100872.
DOI: 10.1016/j.ijft.2024.100872
Google Scholar
[15]
M. Abuşka, Energy and exergy analysis of solar air heater having new design absorber plate with conical surface, Applied Thermal Engineering. 131 (2018) 115-124.
DOI: 10.1016/j.applthermaleng.2017.11.129
Google Scholar
[16]
F. Menasria, M. Zedairia, & A. Moummi, Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio, Energy. 133 (2017) 593-608.
DOI: 10.1016/j.energy.2017.05.002
Google Scholar
[17]
M. E. Nakhchi, J. A. Esfahani, & K. C. Kim, Numerical study of turbulent flow inside heat exchangers using perforated louvered strip inserts, International Journal of Heat and Mass Transfer. 148 (2020) 119143.
DOI: 10.1016/j.ijheatmasstransfer.2019.119143
Google Scholar
[18]
A. Boonloi, & W. Jedsadaratanachai, Numerical investigation on turbulent forced convection and heat transfer characteristic in a square channel with discrete combined V-baffle and V-orifice, Case Studies in Thermal Engineering. 8 (2016) 226-235.
DOI: 10.1016/j.csite.2016.07.003
Google Scholar
[19]
T. Gao, J. Zhu, J. Li, & Q. Xia, Numerical study of the influence of rib orientation on heat transfer enhancement in two-pass ribbed rectangular channel, Engineering Applications of Computational Fluid Mechanics. 12(1) (2018) 117-136.
DOI: 10.1080/19942060.2017.1360210
Google Scholar
[20]
S.W. Chang, P.S. Wu, W. L. Cai, & C. H. Yu, Experimental heat transfer and flow simulations of rectangular channel with twisted-tape pin-fin array, International Journal of Heat and Mass Transfer. 166 (2021) 120809.
DOI: 10.1016/j.ijheatmasstransfer.2020.120809
Google Scholar
[21]
P. Promvonge, P. Promthaisong, & S. Skullong, Experimental and numerical thermal performance in solar receiver heat exchanger with trapezoidal louvered winglet and wavy groove, Solar Energy. 236 (2022)153-174.
DOI: 10.1016/j.solener.2022.02.052
Google Scholar
[22]
X. Cao, T. Du, Z. Liu, H. Zhai, & Z. Duan, Experimental and numerical investigation on heat transfer and fluid flow performance of sextant helical baffle heat exchangers, International Journal of Heat and Mass Transfer. 142 (2019) 118437.
DOI: 10.1016/j.ijheatmasstransfer.2019.118437
Google Scholar
[23]
S. Eiamsa-ard, & V. Chuwattanakul, Visualization of heat transfer characteristics using thermochromic liquid crystal temperature measurements in channels with inclined and transverse twisted-baffles, International Journal of Thermal Sciences. 153 (2020) 106358.
DOI: 10.1016/j.ijthermalsci.2020.106358
Google Scholar
[24]
L. C. Demartini, H. A. Vielmo, & S. V. Möller, Numeric and experimental analysis of the turbulent flow through a channel with baffle plates, Journal of the Brazilian Society of Mechanical Sciences and Engineering. 26 (2004) 153-159.
DOI: 10.1590/s1678-58782004000200006
Google Scholar
[25]
M.K. Siddiqui, et al., Heat transfer augmentation in a heat exchanger tube using a baffle, International Journal of Heat and Fluid Flow. 28 (2) (2007) 318–328.
DOI: 10.1016/j.ijheatfluidflow.2006.03.020
Google Scholar
[26]
Dittus, FW., Boelter, LMK.: Heat transfer in automobile radiators of tubular type. University of California Publications in Engineering. 2, Berkeley, California, University of California Press, (1930).
Google Scholar
[27]
Petukhov, B.: Heat transfer and friction in turbulent pipe flow with variable physical properties. Advances in Heat Transfer, 6, 503-564, (1970).
DOI: 10.1016/s0065-2717(08)70153-9
Google Scholar