Numerical Investigation of Turbulent Fluid Flow and Heat Transfer Phenomena

Article Preview

Abstract:

This study proposes a numerical investigation of turbulent flow and heat transfer properties within an air channel featuring a 7-shaped baffle affixed to the lower wall. The main objective of this computational investigation is to assess how the Reynolds number influences the enhancement of heat transfer across a range of Reynolds values from 18000 to 33000. To solve the governing equations, the QUICK numerical scheme and the SIMPLE discretization algorithm are employed. The numerical results are presented through variations in mean velocity and temperature, as well as profiles of local Nusselt number, friction coefficient, Nusselt number and friction factor. These representations facilitate a comprehensive exploration of the aerodynamic and thermal flow properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-134

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.R. Mashaei, S.M. Hosseinalipour, N. Bagheri, M. Taheri-Ghazvini, and S. Madani, Simultaneous effect of staggered baffles and dispersed nanoparticles on thermal performance of a cooling channel, Applied Thermal Engineering, 120 (2017) 748-762.

DOI: 10.1016/j.applthermaleng.2017.03.142

Google Scholar

[2] S. Skullong, S. Kwankaomeng, C. Thianpong, and P. Promvonge, Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators, International Communications in Heat and Mass Transfer. 50 (2014) 34-43.

DOI: 10.1016/j.icheatmasstransfer.2013.11.001

Google Scholar

[3] P. Promvonge, P. Promthaisong, S. Skullong, Heat transfer augmentation in solar heat exchanger duct with louver-punched V-baffles, Solar Energy. 248 (2022) 103–120.

DOI: 10.1016/j.solener.2022.11.009

Google Scholar

[4] Y. Lei, F. Zheng, C. Song, & Y. Lyu, Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators, International Communications in Heat and Mass Transfer. 111 (2017) 299-311.

DOI: 10.1016/j.ijheatmasstransfer.2017.03.101

Google Scholar

[5] R. Kumar, R. Chauhan, M. Sethi, & A. Kumar, Experimental study and correlation development for Nusselt number and friction factor for discretized broken V-pattern baffle solar air channel, Experimental Thermal and Fluid Science. 81 (2017) 56-75.

DOI: 10.1016/j.expthermflusci.2016.10.002

Google Scholar

[6] H. Olfian, A. Zabihi Sheshpoli, & S. S. Mousavi Ajarostaghi, Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles, Heat Transfer. 49(3) (2020) 1149-1169.

DOI: 10.1002/htj.21656

Google Scholar

[7] J.L. Li, H.W. Tang, & Y.T. Yang, Numerical simulation and thermal performance optimization of turbulent flow in a channel with multi-V-shaped baffles, International Communications in Heat and Mass Transfer. 92 (2018) 39-50.

DOI: 10.1016/j.icheatmasstransfer.2018.02.004

Google Scholar

[8] P. Promvonge, & S. Skullong, Enhanced thermal performance in tubular heat exchanger contained with V-shaped baffles, Applied Thermal Engineering. 185 (2021) 116307.

DOI: 10.1016/j.applthermaleng.2020.116307

Google Scholar

[9] H. Xiao, P. Liu, Z. Liu, & W. Liu, Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles, Renewable Energy. 165 (2021) 14-27.

DOI: 10.1016/j.renene.2020.11.068

Google Scholar

[10] I. Jamal, F. Z. Barhdadi, K. Amghar, S. Daoudi, R. Yahiaoui, & K. Ghoumid, Enhancing performance in solar air channels: A numerical analysis of turbulent flow and heat transfer with novel shaped baffles, Applied Thermal Engineering. (2024) 123561.

DOI: 10.1016/j.applthermaleng.2024.123561

Google Scholar

[11] S. K. Sharma, & V. R. Kalamkar, Computational Fluid Dynamics approach in thermo hydraulic analysis of flow in ducts with rib roughened walls–A review, Renewable and Sustainable Energy Reviews. 55 (2016) 756-788.

DOI: 10.1016/j.rser.2015.10.160

Google Scholar

[12] D. Zheng, X. Wang, & Q. Yuan, The flow and heat transfer characteristics in a rectangular channel with convergent and divergent slit ribs, International Journal of Heat and Mass Transfer. 141 (2019) 464-475.

DOI: 10.1016/j.ijheatmasstransfer.2019.06.060

Google Scholar

[13] J. Liu, S. Hussain, W. Wang, G. Xie, & B. Sundén, Experimental and numerical investigations of heat transfer and fluid flow in a rectangular channel with perforated ribs, International Communications in Heat and Mass Transfer. 121 (2021) 105083.

DOI: 10.1016/j.icheatmasstransfer.2020.105083

Google Scholar

[14] Barhdadi, F.Z., Jamal, I., Amghar, K., Daoudi, S., Yahiaoui, R., & Ghoumid, K. (2024). Numerical Investigation of Different Transverse Rib Shapes on Thermal Convection in a Channel Filled with Nanofluid. International Journal of Thermofluids, 100872.

DOI: 10.1016/j.ijft.2024.100872

Google Scholar

[15] M. Abuşka, Energy and exergy analysis of solar air heater having new design absorber plate with conical surface, Applied Thermal Engineering. 131 (2018) 115-124.

DOI: 10.1016/j.applthermaleng.2017.11.129

Google Scholar

[16] F. Menasria, M. Zedairia, & A. Moummi, Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio, Energy. 133 (2017) 593-608.

DOI: 10.1016/j.energy.2017.05.002

Google Scholar

[17] M. E. Nakhchi, J. A. Esfahani, & K. C. Kim, Numerical study of turbulent flow inside heat exchangers using perforated louvered strip inserts, International Journal of Heat and Mass Transfer. 148 (2020) 119143.

DOI: 10.1016/j.ijheatmasstransfer.2019.119143

Google Scholar

[18] A. Boonloi, & W. Jedsadaratanachai, Numerical investigation on turbulent forced convection and heat transfer characteristic in a square channel with discrete combined V-baffle and V-orifice, Case Studies in Thermal Engineering. 8 (2016) 226-235.

DOI: 10.1016/j.csite.2016.07.003

Google Scholar

[19] T. Gao, J. Zhu, J. Li, & Q. Xia, Numerical study of the influence of rib orientation on heat transfer enhancement in two-pass ribbed rectangular channel, Engineering Applications of Computational Fluid Mechanics. 12(1) (2018) 117-136.

DOI: 10.1080/19942060.2017.1360210

Google Scholar

[20] S.W. Chang, P.S. Wu, W. L. Cai, & C. H. Yu, Experimental heat transfer and flow simulations of rectangular channel with twisted-tape pin-fin array, International Journal of Heat and Mass Transfer. 166 (2021) 120809.

DOI: 10.1016/j.ijheatmasstransfer.2020.120809

Google Scholar

[21] P. Promvonge, P. Promthaisong, & S. Skullong, Experimental and numerical thermal performance in solar receiver heat exchanger with trapezoidal louvered winglet and wavy groove, Solar Energy. 236 (2022)153-174.

DOI: 10.1016/j.solener.2022.02.052

Google Scholar

[22] X. Cao, T. Du, Z. Liu, H. Zhai, & Z. Duan, Experimental and numerical investigation on heat transfer and fluid flow performance of sextant helical baffle heat exchangers, International Journal of Heat and Mass Transfer. 142 (2019) 118437.

DOI: 10.1016/j.ijheatmasstransfer.2019.118437

Google Scholar

[23] S. Eiamsa-ard, & V. Chuwattanakul, Visualization of heat transfer characteristics using thermochromic liquid crystal temperature measurements in channels with inclined and transverse twisted-baffles, International Journal of Thermal Sciences. 153 (2020) 106358.

DOI: 10.1016/j.ijthermalsci.2020.106358

Google Scholar

[24] L. C. Demartini, H. A. Vielmo, & S. V. Möller, Numeric and experimental analysis of the turbulent flow through a channel with baffle plates, Journal of the Brazilian Society of Mechanical Sciences and Engineering. 26 (2004) 153-159.

DOI: 10.1590/s1678-58782004000200006

Google Scholar

[25] M.K. Siddiqui, et al., Heat transfer augmentation in a heat exchanger tube using a baffle, International Journal of Heat and Fluid Flow. 28 (2) (2007) 318–328.

DOI: 10.1016/j.ijheatfluidflow.2006.03.020

Google Scholar

[26] Dittus, FW., Boelter, LMK.: Heat transfer in automobile radiators of tubular type. University of California Publications in Engineering. 2, Berkeley, California, University of California Press, (1930).

Google Scholar

[27] Petukhov, B.: Heat transfer and friction in turbulent pipe flow with variable physical properties. Advances in Heat Transfer, 6, 503-564, (1970).

DOI: 10.1016/s0065-2717(08)70153-9

Google Scholar