Unsteady Radiative Magnetohydrodynamic Flow over a Chemically Reacting Porous Stretching Plate Considering the Soret Effect

Article Preview

Abstract:

The analysis of unsteady MHD flow over a porous stretching plate is critical for various engineering applications, particularly in systems involving chemical reactions and thermal radiation. This study explores the novel effects of heat and mass transfer in a two-dimensional unsteady magnetohydrodynamic (MHD) flow. This present work examines the effects of radiation and a transverse magnetic field on a chemically reacting fluid flowing over a stretched plate. The unsteady nature of the flow is associated with the time-dependent variations in stretching/extending velocity, temperature, and fluid concentration. The nonlinear governing boundary layer partial differential equations (PDEs) are transformed into a set of nonlinear ordinary differential equations (ODEs) using a similarity transformation, which are then numerically solved using the MATLAB bvp4c method. The flow, heat, and concentration profiles are quantitatively analysed through graphs for various problem parameters, including the unsteadiness parameter (A), Hartmann number (M), porosity parameter (Sp), radiation parameter (N), chemical reaction parameter (K), Soret number (Sr), Eckert number (Ec), Schmidt number (Sc), and Prandtl number (Pr). Additionally, the skin friction coefficient, Nusselt number (Nu), and Sherwood number (Sh) are numerically addressed and illustrated using graphs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-150

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. C. Sakiadis (1961a) Boundary-layer behavior on continuous solid surfaces: I. boundary-layer equations for two dimensional and axisymmetric flow. AIChE Journal. 7, 26–28.

DOI: 10.1002/aic.690070108

Google Scholar

[2] B. C. Sakiadis (1961b) Boundary-layer behavior on continuous solid surfaces: II . the boundary layer on a continuous flat surface. AiChE journal. 7, 221–225.

DOI: 10.1002/aic.690070211

Google Scholar

[3] L. J. Crane (1970) Flow past a stretching plate. Zeitschrift f¨ur angewandte Mathematik und Physik. 21, 645–647.

DOI: 10.1007/bf01587695

Google Scholar

[4] W. Banks (1983) Similarity solutions of the boundary-layer equations for a stretching wall. Journal de M´ecanique th´eorique et appliqu´ee. 3, 375–392.

Google Scholar

[5] C. Wang (1984) The three-dimensional flow due to a stretching flat surface. The physics of fluids. 27, 1915–1917.

DOI: 10.1063/1.864868

Google Scholar

[6] H. Andersson (1992) MHD flow of a viscoelastic fluid past a stretching surface. Acta Mechanica. 95, 227–230.

DOI: 10.1007/bf01170814

Google Scholar

[7] E. M. Elbashbeshy (1998) Heat transfer over a stretching surface with variable surface heat flux. Journal of Physics D: Applied Physics 31,(1951)

DOI: 10.1088/0022-3727/31/16/002

Google Scholar

[8] H. I. Andersson, J. B. Aarseth, and B. S. Dandapat (2000) Heat transfer in a liquid film on an unsteady stretching surface. International Journal of Heat and Mass Transfer 43, 69–74.

DOI: 10.1016/s0017-9310(99)00123-4

Google Scholar

[9] A. Y. Ghaly (2002) Radiation effects on a certain MHD free-convection flow. Chaos, Solitons & Fractals. 13, 1843–1850.

DOI: 10.1016/s0960-0779(01)00193-x

Google Scholar

[10] A. Raptis, C. Perdikis, and H. Takhar (2004) Effect of thermal radiation on MHD flow. Applied Mathematics and Computation. 153, 645–649.

DOI: 10.1016/s0096-3003(03)00657-x

Google Scholar

[11] P. D. Ariel, T. Hayat, and S. Asghar (2006) Homotopy perturbation method and axisymmetric flow over a stretching sheet. International Journal of Nonlinear Sciences and Numerical Simulation. 7, 399–406.

DOI: 10.1515/ijnsns.2006.7.4.399

Google Scholar

[12] E. M. Elbashbeshy, and D. A. Aldawody (2010b) Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink. Computers & Mathematics with Applications. 60, 2806–2811.

DOI: 10.1016/j.camwa.2010.09.035

Google Scholar

[13] N. Ahmad, Z. Siddiqui, and M. Mishra (2010a) Boundary layer flow and heat transfer past a stretching plate with variable thermal conductivity. International Journal of Non-linear Mechanics. 45, 306–309.

DOI: 10.1016/j.ijnonlinmec.2009.12.006

Google Scholar

[14] A. Ishak (2010c) Unsteady MHD flow and heat transfer over a stretching plate. Journal of Applied Sciences. 10, 2127-2131.

DOI: 10.3923/jas.2010.2127.2131

Google Scholar

[15] A. Ishak et al. (2011) Mhd boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malaysiana. 40, 391–395.

Google Scholar

[16] N. C. Rosca, and I. Pop (2015b) Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. European Journal of Mechanics - B/Fluids. 51, 61–67.

DOI: 10.1016/j.euromechflu.2015.01.001

Google Scholar

[17] M. K. Choudhary, S. Chaudhary, and R. Sharma (2015a) Unsteady MHD flow and heat transfer over a stretching permeable surface with suction or injection. Procedia Engineering, 127, 703–710.

DOI: 10.1016/j.proeng.2015.11.371

Google Scholar

[18] A. K. Jhankal, R. N. Jat, and D. Kumar (2017) Unsteady MHD flow and heat transfer over a porous stretching plate. International Journal of Computational and Applied Mathematics. 12, 325-333.

Google Scholar

[19] Z. Siri, N. A. C. Ghani, and R. M. Kasmani (2018) Heat transfer over a steady stretching surface in the presence of suction. Boundary Value Problems. 1. 126.

DOI: 10.1186/s13661-018-1019-6

Google Scholar

[20] I. Alarifi, A. Abo-Khalil, M. Osman, L. Lund Baloch, B. A. Mossaad, H. Belmabrouk, and I. Tlili (2019) Mhd flow and heat transfer over vertical stretching sheet with heat sink or source effect. Symmetry. 11, 2–14.

DOI: 10.3390/sym11030297

Google Scholar

[21] A. M. Megahed, N. I. Ghoneim, M. G. Reddy, and M. El-Khatib (2021) Magnetohydrodynamic fluid flow due to an unsteady stretching sheet with thermal radiation, porous medium, and variable heat flux. Advances in Astronomy. 2021, 6686883.

DOI: 10.1155/2021/6686883

Google Scholar

[22] Y. Dharmendar Reddy, B. Shankar Goud, K. S. Nisar, B. Alshahrani, M. Mahmoud, and C. Park (2023) Heat absorption/generation effect on mhd heat transfer fluid flow along a stretching cylinder with a porous medium. Alexandria Engineering Journal. 64, 659–666.

DOI: 10.1016/j.aej.2022.08.049

Google Scholar

[23] A. K. Sarma, and D. Sarma (2024). Unsteady magnetohydrodynamic bioconvection Casson fluid flow in presence of gyrotactic microorganisms over a vertically stretched sheet. Numerical Heat Transfer A, 1–24

DOI: 10.1080/10407782.2024.2389338

Google Scholar

[24] N. L. Nazari, A. S. Abd Aziz, V. D. David, and Z. Md Ali (2018). Heat and mass transfer of magnetohydrodynamics (MHD) boundary layer flow using Homotopy Analysis Method. Matematika (Johor Bahru), 34(3), 189–201

DOI: 10.11113/matematika.v34.n3.1150

Google Scholar

[25] N. S. Aznidar Ismail, A. S. Abd Aziz, M. R. Ilias, and S. K. Soid (2021). MHD boundary layer flow in double stratification medium. Journal of Physics. Conference Series, 1770(1), 012045

DOI: 10.1088/1742-6596/1770/1/012045

Google Scholar

[26] A. K. Sarma, and D. Sarma (2024). MHD flow in free convection over an exponentially stretched sheet submerged in a double-stratified medium. International Journal of Ambient Energy, 45(1)

DOI: 10.1080/01430750.2024.2356060

Google Scholar