[1]
B. C. Sakiadis (1961a) Boundary-layer behavior on continuous solid surfaces: I. boundary-layer equations for two dimensional and axisymmetric flow. AIChE Journal. 7, 26–28.
DOI: 10.1002/aic.690070108
Google Scholar
[2]
B. C. Sakiadis (1961b) Boundary-layer behavior on continuous solid surfaces: II . the boundary layer on a continuous flat surface. AiChE journal. 7, 221–225.
DOI: 10.1002/aic.690070211
Google Scholar
[3]
L. J. Crane (1970) Flow past a stretching plate. Zeitschrift f¨ur angewandte Mathematik und Physik. 21, 645–647.
DOI: 10.1007/bf01587695
Google Scholar
[4]
W. Banks (1983) Similarity solutions of the boundary-layer equations for a stretching wall. Journal de M´ecanique th´eorique et appliqu´ee. 3, 375–392.
Google Scholar
[5]
C. Wang (1984) The three-dimensional flow due to a stretching flat surface. The physics of fluids. 27, 1915–1917.
DOI: 10.1063/1.864868
Google Scholar
[6]
H. Andersson (1992) MHD flow of a viscoelastic fluid past a stretching surface. Acta Mechanica. 95, 227–230.
DOI: 10.1007/bf01170814
Google Scholar
[7]
E. M. Elbashbeshy (1998) Heat transfer over a stretching surface with variable surface heat flux. Journal of Physics D: Applied Physics 31,(1951)
DOI: 10.1088/0022-3727/31/16/002
Google Scholar
[8]
H. I. Andersson, J. B. Aarseth, and B. S. Dandapat (2000) Heat transfer in a liquid film on an unsteady stretching surface. International Journal of Heat and Mass Transfer 43, 69–74.
DOI: 10.1016/s0017-9310(99)00123-4
Google Scholar
[9]
A. Y. Ghaly (2002) Radiation effects on a certain MHD free-convection flow. Chaos, Solitons & Fractals. 13, 1843–1850.
DOI: 10.1016/s0960-0779(01)00193-x
Google Scholar
[10]
A. Raptis, C. Perdikis, and H. Takhar (2004) Effect of thermal radiation on MHD flow. Applied Mathematics and Computation. 153, 645–649.
DOI: 10.1016/s0096-3003(03)00657-x
Google Scholar
[11]
P. D. Ariel, T. Hayat, and S. Asghar (2006) Homotopy perturbation method and axisymmetric flow over a stretching sheet. International Journal of Nonlinear Sciences and Numerical Simulation. 7, 399–406.
DOI: 10.1515/ijnsns.2006.7.4.399
Google Scholar
[12]
E. M. Elbashbeshy, and D. A. Aldawody (2010b) Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink. Computers & Mathematics with Applications. 60, 2806–2811.
DOI: 10.1016/j.camwa.2010.09.035
Google Scholar
[13]
N. Ahmad, Z. Siddiqui, and M. Mishra (2010a) Boundary layer flow and heat transfer past a stretching plate with variable thermal conductivity. International Journal of Non-linear Mechanics. 45, 306–309.
DOI: 10.1016/j.ijnonlinmec.2009.12.006
Google Scholar
[14]
A. Ishak (2010c) Unsteady MHD flow and heat transfer over a stretching plate. Journal of Applied Sciences. 10, 2127-2131.
DOI: 10.3923/jas.2010.2127.2131
Google Scholar
[15]
A. Ishak et al. (2011) Mhd boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malaysiana. 40, 391–395.
Google Scholar
[16]
N. C. Rosca, and I. Pop (2015b) Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. European Journal of Mechanics - B/Fluids. 51, 61–67.
DOI: 10.1016/j.euromechflu.2015.01.001
Google Scholar
[17]
M. K. Choudhary, S. Chaudhary, and R. Sharma (2015a) Unsteady MHD flow and heat transfer over a stretching permeable surface with suction or injection. Procedia Engineering, 127, 703–710.
DOI: 10.1016/j.proeng.2015.11.371
Google Scholar
[18]
A. K. Jhankal, R. N. Jat, and D. Kumar (2017) Unsteady MHD flow and heat transfer over a porous stretching plate. International Journal of Computational and Applied Mathematics. 12, 325-333.
Google Scholar
[19]
Z. Siri, N. A. C. Ghani, and R. M. Kasmani (2018) Heat transfer over a steady stretching surface in the presence of suction. Boundary Value Problems. 1. 126.
DOI: 10.1186/s13661-018-1019-6
Google Scholar
[20]
I. Alarifi, A. Abo-Khalil, M. Osman, L. Lund Baloch, B. A. Mossaad, H. Belmabrouk, and I. Tlili (2019) Mhd flow and heat transfer over vertical stretching sheet with heat sink or source effect. Symmetry. 11, 2–14.
DOI: 10.3390/sym11030297
Google Scholar
[21]
A. M. Megahed, N. I. Ghoneim, M. G. Reddy, and M. El-Khatib (2021) Magnetohydrodynamic fluid flow due to an unsteady stretching sheet with thermal radiation, porous medium, and variable heat flux. Advances in Astronomy. 2021, 6686883.
DOI: 10.1155/2021/6686883
Google Scholar
[22]
Y. Dharmendar Reddy, B. Shankar Goud, K. S. Nisar, B. Alshahrani, M. Mahmoud, and C. Park (2023) Heat absorption/generation effect on mhd heat transfer fluid flow along a stretching cylinder with a porous medium. Alexandria Engineering Journal. 64, 659–666.
DOI: 10.1016/j.aej.2022.08.049
Google Scholar
[23]
A. K. Sarma, and D. Sarma (2024). Unsteady magnetohydrodynamic bioconvection Casson fluid flow in presence of gyrotactic microorganisms over a vertically stretched sheet. Numerical Heat Transfer A, 1–24
DOI: 10.1080/10407782.2024.2389338
Google Scholar
[24]
N. L. Nazari, A. S. Abd Aziz, V. D. David, and Z. Md Ali (2018). Heat and mass transfer of magnetohydrodynamics (MHD) boundary layer flow using Homotopy Analysis Method. Matematika (Johor Bahru), 34(3), 189–201
DOI: 10.11113/matematika.v34.n3.1150
Google Scholar
[25]
N. S. Aznidar Ismail, A. S. Abd Aziz, M. R. Ilias, and S. K. Soid (2021). MHD boundary layer flow in double stratification medium. Journal of Physics. Conference Series, 1770(1), 012045
DOI: 10.1088/1742-6596/1770/1/012045
Google Scholar
[26]
A. K. Sarma, and D. Sarma (2024). MHD flow in free convection over an exponentially stretched sheet submerged in a double-stratified medium. International Journal of Ambient Energy, 45(1)
DOI: 10.1080/01430750.2024.2356060
Google Scholar