Theoretical Prediction of the Thermophysical Properties of FeSi Melts

Article Preview

Abstract:

The FeSi system is a compound forming alloy which exhibits the interesting behavior with respect to the composition. In present work, the thermophysical properties of FeSimelts at 1873 K have been explored on using four-parameter model which is based on Maclaurin infinite series. The analytical expressions for various thermodynamic and microscopic functions have been deduced using the standard thermodynamic relations. The model parameters are estimated using experimental data of activity coefficients and excess free energy of mixing for FeSi melts at 1873 K. For theoretical calculations of the thermophysical properties of FeSi liquid alloys at 1873 K, the same values of the model parameters are used in order to maintain the consistency. The composition dependence of theoretical data for Gibbs free energy of mixing and thermodynamic activities are in excellent agreement with the corresponding experimental data at 1873 K. On using the temperature dependence of model parameters, the enthalpy of mixing and entropy of mixing of FeSi molten alloys at 1873 K arecomputed. There is a well agreement between the theory and experiment. The theoretical values of concentration-concentration structural factor, known as concentration fluctuations in the long wavelength limit agree well with experimental data for FeSi system in molten state at 1873 K. The microscopic function such as short-range order parameter has also been computed as a function of concentration of FeSi melts at 1873 K. Again, the surface properties such as surface concentration and surface tension of FeSi molten alloys at the temperatures at 1823 K and 1873 Kare analyzed by Butler modelin the framework of four-parameter model. The theoretical values are compared with the data available in the literature at 1823 K which show well agreement. Again, the excess free energy of mixing, heat of mixing, concentration fluctuations and short-range order parameter are explored at 1823 K, 1873 K, 1923 K and 2073 K. Further, the transport properties like diffusivity ratio and viscosity of FeSi liquid alloys at 1823 K, 1873 K, 1923 K and 2073 Kare computed. For this, a simple statisticalmechanical modeli.eMoelwyn-Hughes model isemployed in the framework of four-parameter model. The theoretical data exhibit the qualitative agreement with the data available in the literature. The present study reveals that FeSi melt is an ordered system in the temperature range 1823-2073 K. The model parameters are temperature dependent. The concentration dependence of short-range order parameter and diffusivity ratio indicates that there is a likelihood of the existence of complex in FeSi liquid alloys. Keywords:Free energy of mixing; heat of mixing; concentration fluctuations; short-range order parameter, surface tension; viscosity

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-100

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Indian Minerals Year book 2018 (Part-II : Metals & Alloys), 57th Edition, FERRO ALLOYS

Google Scholar

[2] X.Li, J.Wang, J.Qin, B. Dong, S. Pan, The reassessment of the structural transition regions along the liquidus of Fe-Si alloys and a possible liquid-liquid structural transition in FeSi2 alloy, Phys. Lett. A 382, (2018), 2655-2661

DOI: 10.1016/j.physleta.2018.06.019

Google Scholar

[3] J. Marcin, M. Capik, J. Kovac, P. Svec, I. Petryshynets, F. Kovac, I. Skorvanek, Acta Electrotechnica Inform. 13,(2013), 91-94

Google Scholar

[4] S. Cui, I-H.,Jung, Critical reassessment of the Fe-Si system, CALPHAD 56, (2017), 108-125

DOI: 10.1016/j.calphad.2016.11.003

Google Scholar

[5] J. Wu, X. Chong, Y. Jiag, J. Feng, Stability, electronic structure mechanical and thermodynamic properties of Fe-Si binary compounds, J. Alloys Compd. 693, (2017), 859-870

DOI: 10.1016/j.jallcom.2016.09.225

Google Scholar

[6] J. Zhai, C. Shi, W. Lang, Y. Zhao, S. Wang, Effect of FeSi Alloy Additions and Calcium Treatment on Non-metallic Inclusions in 304 Stainless Steel during AOD and LF Refining Process, Metals 12, (2022), 1338

DOI: 10.3390/met12081338

Google Scholar

[7] M. Zaiad, A. Ospina-Vargas, N. Buiron, J. Favergeon, N. Fenineche, Additive Manufacturing of Soft Ferromagnetic Fe 6.5% Si Annular Cores : Process Parameters, Microstructure and Magnetic Properties, IEEE Trans. Magn. 58, (2022), 1-9

DOI: 10.1109/tmag.2022.3202631

Google Scholar

[8] K. Han, M. Saito, J. Xia, I. Ohnuma, R. Kainuma, Experimental determination of phase diagram involving silicides in the FeSi binary system, J. Alloys Compd. 919, (2022), 165810

DOI: 10.1016/j.jallcom.2022.165810

Google Scholar

[9] J. Chen, W. Zhao, X. Zhang, R. Lu, C. Guo, S. Chen, J. Du, C. Yu, X Liu, High – performance gradient Fe-Si alloy thin sheets fabricated by solid powder siliconizing and diffusion annealing, J. Alloys Compd. 946, (2023), 169412

DOI: 10.1016/j.jallcom.2023.169412

Google Scholar

[10] D.S. Petrovic, C. Donik, I. Paulin, M. Godec, M. Voncina, M. Petrun, Solidification Behavior of Fe- 6.5 Si Alloy Powder for AM-SLM Processing, as Assessed by Differential Scanning Calorimetry, Materials 16, (2023), 4229

DOI: 10.3390/ma16124229

Google Scholar

[11] R.Hultgren, P.D. Desai, D.T. Hawkins,M. Gleiser K.K. Kelley , Selected Values of the Thermodynamic Properties of Binary Alloys, ASM ,Metal Park , Ohio,(1973)

Google Scholar

[12] R.N. Singh, F. Sommer, Segregation and immiscibility in liquid binary alloys, Rep.Prog. Phys 60, (1997), 57-150

DOI: 10.1088/0034-4885/60/1/003

Google Scholar

[13] A. Kumar, I.S. Jha, B.P. Singh, Quasi-lattice model for the thermodynamic properties and microscopic structure of molten Fe-Si alloy, Physica B, 406, (2011), 4338-4341

DOI: 10.1016/j.physb.2011.08.060

Google Scholar

[14] D. Adhikari, I.S. Jha, B.P. Singh, Structural asymmetry in liquid Fe-Si alloys, Phil Mag.90, (2010), 2687

DOI: 10.1080/14786431003745302

Google Scholar

[15] R.N. Singh, Short-range order and concentration fluctuations in binary molten alloys, Can. J. Phys. 65, (1987), 309-325

DOI: 10.1139/p87-038

Google Scholar

[16] R. Novakivic, D. Giurrano, J. Lee, M. Mohr, S. Delsante, G. Borzone, F. Miani, H.-J. Fecht, Thermophysical Properties of Fe-Si and Cu-Pb Melts and Their Effects on Solidification Related Processes, Metals 12,(2022), 336

DOI: 10.3390/met12020336

Google Scholar

[17] A.B. Bhatia, W.H. Hargrove, Concentration fluctuations and thermodynamic properties of some compound forming binary molten systems, Phys. Rev. B 10, (1974), 3186-3196

DOI: 10.1103/physrevb.10.3186

Google Scholar

[18] T. Yoshikawa, Surface Tensions of Fe-(30-40 mol %) Si-C Alloys at 1523-1723 K, Mater. Trans. 54,(2013), 1968-1974

DOI: 10.2320/matertrans.m2013211

Google Scholar

[19] K. Mukai, T. Matsushita, K.C. Mills, S. Seetaraman, T. Furujono, Surface Tension of Liquid Alloys- A Thermodynamic Approach, Metall. Mater. Trans. 39B, (2008), 561-569

DOI: 10.1007/s11663-008-9164-4

Google Scholar

[20] J.P. Hajra and B. Mazumdar, Thermodynamics of Binary Systems Using Interaction Parameters, Metall. Trans., B 22,(1991) , 593-605

DOI: 10.1007/bf02679014

Google Scholar

[21] M.M. Hussain, S. Ahmad, R.P. Chaudhary, Indu Shekhar Jha, Jagdhar Mandal, Composition and temperature dependence of concentration fluctuations of liquid AlSn Alloys, Material Today: Proceedings 59(1), 2022, 324-330

DOI: 10.1016/j.matpr.2021.11.182

Google Scholar

[22] J.A.V. Butler, The Thermodynamics of the Surfaces of the Solutions, Proc. Roy. Soc. A 135, (1932), 348-375

Google Scholar

[23] G. Gasior, Z. Moser and J. Pstrus, Density and surface tension of the Pb-Sn liquid alloys, J. Phase Equilibria, 22 (1): 20-25, (2001)

DOI: 10.1007/s11669-001-0051-9

Google Scholar

[24] Y.A. Odusote, A.I. Popoola and S.S. Oluyamo, Bulk and surface properties of demixing liquid Al-Sn and Sn-Tl alloys, Appl. Phys A: 122:80, (2016)

DOI: 10.1007/s00339-015-9591-4

Google Scholar

[25] O.E. Awe, A. A. Azeez, Temperature dependence of the bulk and surface properties of liquid Zn-Cd alloys, Appl. Phys. A, 123: 363, (2017)

DOI: 10.1007/s00339-017-0977-3

Google Scholar

[26] D. Giuranno and R. Novakovic, Surface and transport properties of liquid Bi-Sn alloys, J. Mater. Sci.: Mater. in Electro. 31: 5533-5545,(2020)

DOI: 10.1007/s10854-020-03118-y

Google Scholar

[27] Rajendra Prasad Chaudhary, Nitu Kumari, Jagdhar Mandal, Indu Shekhar Jha, Theoretical Analysis of the Thermodynamic, Structural, Surface and Transport Properties of PbSn Liquid Alloys at 1050 K, Defect and Diffusion Forum: 419, 2022, 127-139

DOI: 10.4028/p-08n23d

Google Scholar

[28] E. Moelwyn-Hughes, Physical Chemistry, Pergamon Press, (1961)

Google Scholar

[29] G. Kaptay, A method to calculate equilibrium surface phase transition lines in monotectic systems, CALPHAD 29, (2005), 56-67

DOI: 10.1016/j.calphad.2005.04.004

Google Scholar

[30] I. Budai, M.Z. Benko, G. Kaptay, Comparison of Different Theoretical Models to Experimental Data on Viscosity of Binary Liquid Alloys, Meter. Sci. Forum 537-538, (2007), 489-496

DOI: 10.4028/www.scientific.net/msf.537-538.489

Google Scholar

[31] G.K. Shrestha, B.K. Singh, I.S. Jha, B.P. Singh, D. Adhikari, Optimization method for the study of the properties of Al-Sn binary liquid alloys, Physica B 514, (2017), 1-7

DOI: 10.1016/j.physb.2017.03.005

Google Scholar

[32] K. Morohoshi, M. Uchikoshi, M.Isshiki, H. Fukuyama, Surface Tension of Liquid Iron as Funtions of Oxygen Activity and Temperature, ISIJ International 51,(2011), 1580-1586

DOI: 10.2355/isijinternational.51.1580

Google Scholar

[33] A.V. Shishkin, A.S. Basin, Surface tension of liquid Silicon,Theor. Found. Chem. Eng. 38, (2004), 660-668

DOI: 10.1007/s11236-005-0043-2

Google Scholar

[34] T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals,Clarendon Press, Oxford, (1988)

Google Scholar

[35] M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egree, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, W.A. Wakeham, Reference Data for the Density and Viscosity of Liquid Aluminium and Liquid Iron, J. Phys. Chem. Ref. Data 35(2006), 285- 306

DOI: 10.1063/1.2149380

Google Scholar

[36] M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J. Wu, W.A. Wakeham, Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium and Zinc, J. Phys. Chem. Ref. Data 41(2012), 033101

DOI: 10.1063/1.4729873

Google Scholar

[37] A.L. Bel'tyukov, V.I. Lad'yanov, A.I. Shishmarin, Viscosity of Fe-Si melts with silicon content upto 45 at %, High Temp. 52, (2014), 185-191

DOI: 10.1134/s0018151x14010040

Google Scholar