[1]
Y. Liu, M. Ersson, H. Liu, P. G. Jönsson, Y. Gan, A review of physical and numerical approaches for the study of gas stirring in ladle metallurgy, Metallurgical and Materials Transactions B, 50 (2019) 555–577
DOI: 10.1007/s11663-018-1446-x
Google Scholar
[2]
D. Mazumdar, R.I.L Guthrie, The physical and mathematical modeling of gas stirred ladle systems, ISIJ Int. 35 (1995) 1-20
DOI: 10.2355/isijinternational.35.1
Google Scholar
[3]
D. H. Zhang, M. G. Shen, Q. H. Qi, J. W. Kuang, Study on amplitude of the surface of liquid steel in bottom-blowing ladle with immersed tube, Advanced Materials Research. 734–737 (2013) 1511–1515. Trans Tech Publications, Ltd
DOI: 10.4028/www.scientific.net/amr.734-737.1511
Google Scholar
[4]
V.P. Моvchan, M.M. Berezhnyy, Fundamentals of metallurgy. Dnipropetrovk, 2001, 336. (in Russian)
Google Scholar
[5]
A.M. Amaro-Villeda, M.A. Ramirez-Argaez, A.N. Conejo, Effect of slag properties on mixing phenomena in gas-stirred ladles by physical modeling. ISIJ Int. 54 (2014) 1–8
DOI: 10.2355/isijinternational.54.1
Google Scholar
[6]
S.P. Patil, D. Satish, M. Peranandhanathan, D. Mazumdar, Mixing models for slag covered, argon stirred ladles, ISIJ Int. 50 (2010) 1117–1124
DOI: 10.2355/isijinternational.50.1117
Google Scholar
[7]
D. Mazumdar, H.B. Kim, R.I.L. Guthrie, Modelling criteria for flow simulation in gas stirred ladles: experimental study, Ironmak. Steelmak., 27 (2000) 302–309
DOI: 10.1179/030192300677598
Google Scholar
[8]
L. E. Jardón-Pérez, D. R. González-Morales, G. Trápaga, C. González-Rivera, M.A. Ramírez-Argáez, Effect of differentiated injection ratio, gas flow rate, and slag thickness on mixing time and open eye area in gas-stirred ladle assisted by physical modeling, Metals, 9 (2019) 555-569
DOI: 10.3390/met9050555
Google Scholar
[9]
K. Krishnapisharody, N.B. Ballal, P.K. Sinha, M.K. Sardar, K.N. Jha, Water model experiments on mixing phenomena in a VOD ladle, ISIJ Int., 39 (1999) 419–25
DOI: 10.2355/isijinternational.39.419
Google Scholar
[10]
J. Mandal, S. Patil, M. Madan, D. Mazumdar, Mixing time and correlation for ladles stirred with dual porous plugs, Metall. Mater. Trans. B, 36B (2005) 479–487
DOI: 10.1007/S11663-005-0039-7
Google Scholar
[11]
N. Mazumdar, A. Mahadevan, M. Madan, D. Mazumdar, Impact of ladle design on bath mixing, ISIJ Int., 45 (2005) 1940–1942
DOI: 10.2355/isijinternational.45.1940
Google Scholar
[12]
Z.Q. Liu, L.M Li, B.K. Li, Modeling of gas-steel-slag three-phase flow in ladle. Metallurgy: Part I. Physical Modeling, ISIJ Int., 57 (2017) 1971–1979
DOI: 10.2355/isijinternational.ISIJINT-2016-710
Google Scholar
[13]
V. Singh, J. Kumar, C. Bhanu, S.K. Ajmani, S.K. Dash, Optimization of the bottom tuyeres configuration for the BOF vessel using physical and mathematical modeling, ISIJ Int., 47(11) (2007) 1605-1612
DOI: 10.2355/isijinternational.47.1605
Google Scholar
[14]
L. Molchanov, T. Golub, G. Kononenko, A. Koveria, T. Kimstach, Physical modelling of additives dissolution features in the bath of an induction furnace crucible, La Metallurgia Italiana, 115(2) (2024) 52-60.
Google Scholar
[15]
T. Golub, L. Molchanov, S. Semykin, A. Koveria, Modelling the process of oxidising impurities in a metal bath using coherent nozzle, Acta Metallurgica Slovaca, 29(2) (2023) 63–66
DOI: 10.36547/ams.29.2.1733
Google Scholar
[16]
T. Stišovic, K. Koch, Bottom blowing investigations on a cold model reactor to optimise mixing behaviour in metallurgical processes, Steel Research International, 73(9) (2002) 373–377.
DOI: 10.1002/srin.200200002
Google Scholar
[17]
H. Tang, J. Liu, S. Zhang, X. Guo, J. Zhang, A novel dual plugs gas blowing mode for efficient ladle metallurgy, Ironmaking & Steelmaking, 46(5) (2019) 405-415
DOI: 10.1080/03019233.2019.1576270
Google Scholar
[18]
T. Golub, L. Molchanov, A. Koveria, L. Kieush, Study on a two-phase low-temperature model of the features of metal tapping in basic oxygen furnace, Acta Metallurgica Slovaca, 28(3) (2022) 151-156
DOI: 10.36547/ams.28.3.1566
Google Scholar
[19]
H.Y. Tang, X.C. Guo, G.H. Wu, Y. Wang, Effect of gas blown modes on mixing phenomena in a bottom stirring ladle with dual plugs, ISIJ Int., 56 (2016) 2161–2170
DOI: 10.2355/ISIJINTERNATIONAL.ISIJINT-2016-360
Google Scholar
[20]
S.-H. Cho, C. W. Kim, J. W. Han, B. D. You, D. S. Kim, Effect of melt depth and nozzle type on the mixing behavior in bottom-blown steelmaking ladle, A water model approach, Materials Science Forum, 510–511 (2006) 494–497. https://doi.org/10.4028/ www.scientific.net/msf.510-511.494
DOI: 10.4028/www.scientific.net/msf.510-511.494
Google Scholar
[21]
D. Mazumdar and J. W. Evans, Macroscopic models for gas stirred ladles, ISIJ International, 44(3) (2004) 447–461
DOI: 10.2355/isijinternational.44.447
Google Scholar
[22]
Y. Liu, M. Ersson, H. Liu, P. G. Jönsson & Y. Gan, A review of physical and numerical approaches for the study of gas stirring in ladle metallurgy, Metall. Mater. Trans. B, 50 (2019) 555–577
DOI: 10.1007/s11663-018-1446-x
Google Scholar
[23]
X. Li, S. Hu, D. Wang, T. Qu, G. Wu, P. Zhang, Q. Quan, X. Zhou, Z. Zhang, Inclusion removements in a bottom-stirring ladle with novel slot-porous matched dual plugs, Metals, 12 (2022) 162
DOI: 10.3390/met12010162
Google Scholar
[24]
M. Lv, S.Р. Chen, H.M. Guo, Y.-j. Hao & X.-d. Xing, Effect of different bottom blowing elements on stirring characteristics of molten bath in converter, J. Iron Steel Res. Int., 31 (2024) 368–376
DOI: 10.1007/s42243-023-01082-5
Google Scholar
[25]
X. Gao, K. Liu and B. Yang, Mixing effect for the bath with bottom regiment arrangements in the steelmaking converter, Metall. Res. Technol., 120(6) (2023) 610-622
DOI: 10.1051/metal/2023077
Google Scholar
[26]
R. Tiwari. B. Girard, C. Labrecque, M.M. Isac, R.I.L. Guthrie, CFD Predictions for mixing times in an elliptical ladle using single- and dual-plug configurations, Processes, 11 (2023) 1665
DOI: 10.3390/pr11061665
Google Scholar
[27]
Y. Liu, H. Bai, H. Liu, M. Ersson, P.G. Jönsson, Y. Gan, Physical and numerical modeling on the mixing condition in a 50-t ladle, Metals, 9 (2019) 1136
DOI: 10.3390/met9111136
Google Scholar
[28]
Z. Li, J. Qiu, Y. Chen, Ch. Li, F. He, K. Zhao, X. Lu, R. Liu, D. Ju, Ch. Zheng, Z. Zhu, Physical and numerical simulation for optimization of bottom blowing arrangement of 160-ton ladle, Metallurgical Research and Technology, 122(1) (2025) 118. https://
DOI: 10.1051/metal/2024111
Google Scholar
[29]
C.M. Fan, W.S. Hwang, Study of optimal Ca-Si injection position in gas stirred ladle based on water model experiment and flow simulation, Ironmak. Steelmak., 29 (2002) 415–426.
DOI: 10.1179/030192302225004638
Google Scholar
[30]
D.Yu. Kabakov, S.Ye. Samohvalov, V.P. Pipuk, O.A. Filatova, Hydrodynamic and heat transfer in steel melt modeling at electric arc heating in the ladle furnace unit, Bulletin of MSTU, 3 (2013) 33-37 (in Russian).
Google Scholar
[31]
Z. Li, W. Ouyang, Z. Wang, R. Zheng, Y. Bao, C. Gu, Physical simulation study on flow field characteristics of molten steel in 70-t ladle bottom argon blowing process, Metals, 13 (2023) 639
DOI: 10.3390/met13040639
Google Scholar
[32]
R. Cheng, L. Zhang, Y. Yin, J. Zhang, Effect of side blowing on fluid flow and mixing phenomenon in gas-stirred ladle, Metals, 11 (2021) 369
DOI: 10.3390/met11020369
Google Scholar
[33]
W. Lou, M. Zhu, Numerical simulations of inclusion behavior and mixing phenomena in gas-stirred ladles with different arrangement of tuyeres, ISIJ International, 54(1) (2014) 9–18
DOI: 10.2355/isijinternational.54.9
Google Scholar
[34]
Z. Liu, L. Li, B. Li Modeling of gas-steel-slag three-phase flow in ladle metallurgy: Part I. Physical modeling, ISIJ Int., 57 (2017) 1971–1979
DOI: 10.2355/isijinternational.ISIJINT-2016-710
Google Scholar
[35]
L. Li, C. Chen, X. Tao, H. Qi, T. Liu, Q. Yan, F. Deng, A. Allayev, W. Lin, J. Wang, Effect of salt solution tracer dosage on the transport and mixing of tracer in a water model of asymmetrical gas-stirred ladle with a moderate gas flow rate, Symmetry, 16 (2024) 619
DOI: 10.3390/sym16050619
Google Scholar
[36]
L.O.Z. Falsetti, D.N. Ferreira Muche, M.R.B. Andreeta, M.H. Moreira, V.C. Pandolfelli, Bubble generation in refractory porous plugs: The role of the ceramic surface composition, Int. J Ceramic Eng. Sci., 4 (2022) 199–210
DOI: 10.1002/ces2.10132
Google Scholar
[37]
M. Ross, Matter under extreme temperature and pressure conditions, Rep. Prog. Phys., 48(1) (1985)
DOI: 10.1088/0034-4885/48/1/001
Google Scholar
[38]
F. Tan, H. Cao, G. Lin et al. Mathematical modeling of the fluid hydrodynamics and refining effects in a gas-stirred ladle with pulsed bottom blowing, Metall. Mater. Trans. B, 55 (2024) 4624–4633
DOI: 10.1007/s11663-024-03244-6
Google Scholar
[39]
A.N. Conejo, W. Feng, Ladle eye formation due to bottom gas injection: A reassessment of experimental data, Metall. Mater. Trans. B, 53 (2022) 999–1017
DOI: 10.1007/s11663-021-02355-8
Google Scholar
[40]
U. Singh, R. Anapagaddi, S. Mangal et al. Multiphase modeling of bottom-stirred ladle for prediction of slag–steel interface and estimation of desulfurization behavior, Metall. Mater. Trans. B, 47 (2016) 1804–1816
DOI: 10.1007/s11663-016-0620-2
Google Scholar
[41]
K. Yonezawa, K. Schwerdtfeger, Correlation for area of spout eyes in ladle metallurgy (Comments on "Spout eye area correlation in ladle metallurgy" by Subagyo, Brooks and Irons), ISIJ International, 44 (1) (2004) 217-219. https://doi.org/10.2355/isijinternational. 44.217
DOI: 10.2355/isijinternational.44.217
Google Scholar
[42]
T. Merder, S. Kozłowski, J. Pieprzyca et al., Physical modeling of two-phase liquid–gas processes occurring in the refining ladle for Fe–Si alloy refining process, Sci. Rep., 14 (2024)17565
DOI: 10.1038/s41598-024-68501-9
Google Scholar