Evaluation of the Photoprotective Effect of Titanium Oxide Nanotubes on Spheroids of hFOB 1.19 Cells

Article Preview

Abstract:

Conventional physical sunscreens are formulated with titanium oxide (TiO2), which reflects and scatters the UVA and UVB radiation, making them suitable for sensitive skin. However, its high refractive index can result in an undesirable white cast and potentially limit their cosmetic acceptability and effectiveness. Therefore, this study focuses on the formation of titanium oxide nanotubes (TNTs) as an alternative, since their nanoscale size minimizes light scattering and allows for a more transparent appearance when applied to the skin. TNTs were formed by anodic oxidation using an electrolyte based on ethylene glycol (EG), ammonium fluoride (NH4F), and distilled water. Anodization was conducted at a constant voltage of 60 V for 1 h. TNTs were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM), which confirmed the presence of Ti2O and an inner diameter of 53 ± 4 nm. Biocompatibility was assessed using 3D spheroid cultures of hFOB 1.19 osteoblasts, and results showed that TNTs at concentrations of 0.2 mg/mL and 0.02 mg/mL were non-cytotoxic. The 0.2 mg/mL concentration exhibited a superior photoprotective effect, maintaining approximately 75% cell viability under UVB radiation conditions. These findings highlight the potential of TNTs as transparent, biocompatible UV filters for next-generation sunscreens.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-152

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.P. Chavda, D. Acharya, V. Hala, S. Daware, L.K. Vora. Sunscreens: A comprehensive review with the application of nanotechnology. J. Drug Deliv. Sci. Technol. 86 (2023) 104720-104748.

DOI: 10.1016/j.jddst.2023.104720

Google Scholar

[2] J. D´Orazio, S. Jarrett, A. Amaro-Ortiz, T. Scott, UV radiation and the skin. Int. J. Mol. Sci.14 (2013) 12222-12248.

DOI: 10.3390/ijms140612222

Google Scholar

[3] The Skin Cancer Foundation. (n.d.). The Skin Cancer Foundation's guide to sunscreens. https://www.skincancer.org/skin-cancer-prevention/sun-protection/sunscreen/

Google Scholar

[4] G.P. Pfeifer, Mechanisms of UV-induced mutations and skin cancer, Genome Instability & Disease. 1 (2020) 99–113.

DOI: 10.1007/s42764-020-00009-8

Google Scholar

[5] M. Gackowski, T. Osmałek, A. Froelich, F. Otto, R. Schneider, J. Lulek, Phototoxic or photoprotective?—Advances and limitations of titanium (IV) oxide in dermal formulations—A review, Int. J. Mol. Sci. 24 (2023) 8159.

DOI: 10.3390/ijms24098159

Google Scholar

[6] J.A.C. Nascimento Júnior, A.M. Santos, A.M.S. Oliveira, A.B. Santos, A.A. de Souza Araújo, D.M. Aragón, L.A. Frank, M.R. Serafini, The tiny big difference: Nanotechnology in photoprotective innovations – A systematic review, AAPS PharmSciTech. 25 (2024) 212.

DOI: 10.1208/s12249-024-02925-4

Google Scholar

[7] S.Abdel Azim, L. Bainvoll, N. Vecerek, V.A. DeLeo, B.L. Adler, Sunscreens part 1: Mechanisms and efficacy, J. Am. Acad. Dermatol. 92 (2025) 677–686.

DOI: 10.1016/j.jaad.2024.02.065

Google Scholar

[8] F. Sambale, A. Lavrentieva, F. Stahl, C. Blume, M. Stiesch, C. Kasper, D. Bahnemann, T. Scheper, Three dimensional spheroid cell culture for nanoparticle safety testing, J. Biotechnol. 205 (2015) 120–129.

DOI: 10.1016/j.jbiotec.2015.01.001

Google Scholar

[9] P.L. Sanches, L.R. de Oliveira Geaquinto, R. Cruz, D.C. Schuck, M. Lorencini, J.M. Granjeiro, A.R.L. Ribeiro, Toxicity evaluation of TiO₂ nanoparticles on the 3D skin model: A systematic review, Front. Bioeng. Biotechnol. 8 (2020) 575.

DOI: 10.3389/fbioe.2020.00575

Google Scholar

[10] S. Shabbir, M.F.-e.-A. Kulyar, Z.A. Bhutta, P. Boruah, M. Asif, Toxicological consequences of titanium dioxide nanoparticles (TiO₂NPs) and their jeopardy to human population, BioNanoScience. 11 (2021) 621–632.

DOI: 10.1007/s12668-021-00836-3

Google Scholar

[11] I.P. Torres Avila, R.M. Souza, A. Chino Ulloa, P.A. Ruiz Trabolsi, R. Tadeo Rosas, R. Carrera Espinoza, E. Hernández Sánchez, Effect of anodization time on the adhesion strength of titanium nanotubes obtained on the surface of the Ti-6Al-4V alloy by anodic oxidation, Cryst. 13 (2023) 1059–1071.

DOI: 10.3390/cryst13071059

Google Scholar

[12] L. Khezami, I. Lounissi, A. Hajjaji, A. Guesmi, A.A. Assadi, B. Bessais, Synthesis and Characterization of TiO2 Nanotubes (TiO2-NTs) Decorated with Platine Nanoparticles (Pt-NPs): Photocatalytic Performance for Simultaneous Removal of Microorganisms and Volatile Organic Compounds, Materials. 14 (2021) 7341.

DOI: 10.3390/ma14237341

Google Scholar

[13] B. Dréno, A. Alexis, B. Chuberre, M. Marinovich, Safety of titanium dioxide nanoparticles in cosmetics, J. Eur. Acad. Dermatol. Venereol. 33 (2019) 34–46.

DOI: 10.1111/jdv.15943

Google Scholar

[14] G. de Souza Castro, W. de Souza, T.S.M. Lima, D.C. Bonfim, J. Werckmann, B.S. Archanjo, J.M. Granjeiro, A.R. Ribeiro, The effects of titanium dioxide nanoparticles on osteoblasts' mineralization: A comparison between 2D and 3D cell culture models, Nanomaterials. 13 (2023) 425.

DOI: 10.3390/nano13030425

Google Scholar

[15] A. Pagano, M. Cabianca, R. Pozzoli, P. Petrone, A. Boitano, M. Bini, A. Degan, M. Maioli, A. Mastore, Understanding the toxicological effects of TiO₂ nanoparticles extracted from sunscreens on human keratinocytes and skin explants, Free Radic. Biol. Med. 183 (2022)127-137.

DOI: 10.32657/10356/175588

Google Scholar

[16] M.V. Vaudagna, V. Aiassa, A. Marcotti, M.F. Ponce Beti, M.F. Constantin, M.F. Perez, A. Zoppi, M.C. Becerra, M.J. Silvero, Titanium Dioxide Nanoparticles in sunscreens and skin photo-damage: Development, synthesis and characterization of a novel biocompatible alternative based on their in vitro and in vivo study, J. Photochem. Photobiol. C: Photochem. Rev. 15 (2023) 1–8.

DOI: 10.1016/j.jpap.2023.100173

Google Scholar

[17] C. Cole, T. Shyr, H. Ou-Yang, Metal oxide sunscreens protect skin by absorption, not by reflection or scattering, Photodermatol. Photoimmunol. Photomed. 32 (2016) 5–10.

DOI: 10.1111/phpp.12214

Google Scholar

[18] M. Wei, X. He, N. Liu, H. Deng, Role of reactive oxygen species in ultraviolet-induced photodamage of the skin, Cell Div. 19 (2024) 1-9.

DOI: 10.1186/s13008-024-00107-z

Google Scholar

[19] M. Rajasekar, J. Mary, M. Sivakumar, M. Selvam, Recent developments in sunscreens based on chromophore compounds and nanoparticles, RSC Adv. 14 (2024) 2529–2563.

DOI: 10.1039/d3ra08178h

Google Scholar

[20] Y. Ono and H. Iwahashi, Titanium dioxide nanoparticles impart protection from ultraviolet irradiation to fermenting yeast cells, Biochemistry and Biophysics Reports, 30 (2022) 1-5.

DOI: 10.1016/j.bbrep.2022.101221

Google Scholar

[21] O. Kose, M. Tomatis, L. Leclerc, NB. Belblidia, JF. Hochepied, F. Turci, J. Pourchez, V. Forest. Impact of the Physicochemical Features of TiO2 Nanoparticles on Their In Vitro Toxicity. Chem Res Toxicol. 33 (2020) 2324-2337.

DOI: 10.1021/acs.chemrestox.0c00106

Google Scholar

[22] H. Zare, S. Ahmadi, A. Ghasemi, M. Ghanbari, N. Rabiee, M. Bagherzadeh, M. Karimi, TJ. Webster, MR Hamblin, E. Mostafavi. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine. 16 (2021) 1681-1706.

DOI: 10.2147/ijn.s299448

Google Scholar

[23] SY. Lee, IS. Koo, HJ. Hwang, DW. Lee, In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models, SLAS Discovery. 28 (2023) 119-137.

DOI: 10.1016/j.slasd.2023.03.006

Google Scholar

[24] K. Duval, H. Grover, LH. Han, Y. Mou, AF. Pegoraro, J. Fredberg, Z. Chen. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda). 32 (2017) 266-277.

DOI: 10.1152/physiol.00036.2016

Google Scholar

[25] SA. Langhans. Three-Dimensional in vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol. 9 (2018) 1-14.

DOI: 10.3389/fphar.2018.00006

Google Scholar

[26] E. Colombo, MG. Cattaneo. Multicellular 3D Models to Study Tumour-Stroma Interactions. Int J Mol Sci. 22 (2021) 1-19.

DOI: 10.3390/ijms22041633

Google Scholar