[1]
V.P. Chavda, D. Acharya, V. Hala, S. Daware, L.K. Vora. Sunscreens: A comprehensive review with the application of nanotechnology. J. Drug Deliv. Sci. Technol. 86 (2023) 104720-104748.
DOI: 10.1016/j.jddst.2023.104720
Google Scholar
[2]
J. D´Orazio, S. Jarrett, A. Amaro-Ortiz, T. Scott, UV radiation and the skin. Int. J. Mol. Sci.14 (2013) 12222-12248.
DOI: 10.3390/ijms140612222
Google Scholar
[3]
The Skin Cancer Foundation. (n.d.). The Skin Cancer Foundation's guide to sunscreens. https://www.skincancer.org/skin-cancer-prevention/sun-protection/sunscreen/
Google Scholar
[4]
G.P. Pfeifer, Mechanisms of UV-induced mutations and skin cancer, Genome Instability & Disease. 1 (2020) 99–113.
DOI: 10.1007/s42764-020-00009-8
Google Scholar
[5]
M. Gackowski, T. Osmałek, A. Froelich, F. Otto, R. Schneider, J. Lulek, Phototoxic or photoprotective?—Advances and limitations of titanium (IV) oxide in dermal formulations—A review, Int. J. Mol. Sci. 24 (2023) 8159.
DOI: 10.3390/ijms24098159
Google Scholar
[6]
J.A.C. Nascimento Júnior, A.M. Santos, A.M.S. Oliveira, A.B. Santos, A.A. de Souza Araújo, D.M. Aragón, L.A. Frank, M.R. Serafini, The tiny big difference: Nanotechnology in photoprotective innovations – A systematic review, AAPS PharmSciTech. 25 (2024) 212.
DOI: 10.1208/s12249-024-02925-4
Google Scholar
[7]
S.Abdel Azim, L. Bainvoll, N. Vecerek, V.A. DeLeo, B.L. Adler, Sunscreens part 1: Mechanisms and efficacy, J. Am. Acad. Dermatol. 92 (2025) 677–686.
DOI: 10.1016/j.jaad.2024.02.065
Google Scholar
[8]
F. Sambale, A. Lavrentieva, F. Stahl, C. Blume, M. Stiesch, C. Kasper, D. Bahnemann, T. Scheper, Three dimensional spheroid cell culture for nanoparticle safety testing, J. Biotechnol. 205 (2015) 120–129.
DOI: 10.1016/j.jbiotec.2015.01.001
Google Scholar
[9]
P.L. Sanches, L.R. de Oliveira Geaquinto, R. Cruz, D.C. Schuck, M. Lorencini, J.M. Granjeiro, A.R.L. Ribeiro, Toxicity evaluation of TiO₂ nanoparticles on the 3D skin model: A systematic review, Front. Bioeng. Biotechnol. 8 (2020) 575.
DOI: 10.3389/fbioe.2020.00575
Google Scholar
[10]
S. Shabbir, M.F.-e.-A. Kulyar, Z.A. Bhutta, P. Boruah, M. Asif, Toxicological consequences of titanium dioxide nanoparticles (TiO₂NPs) and their jeopardy to human population, BioNanoScience. 11 (2021) 621–632.
DOI: 10.1007/s12668-021-00836-3
Google Scholar
[11]
I.P. Torres Avila, R.M. Souza, A. Chino Ulloa, P.A. Ruiz Trabolsi, R. Tadeo Rosas, R. Carrera Espinoza, E. Hernández Sánchez, Effect of anodization time on the adhesion strength of titanium nanotubes obtained on the surface of the Ti-6Al-4V alloy by anodic oxidation, Cryst. 13 (2023) 1059–1071.
DOI: 10.3390/cryst13071059
Google Scholar
[12]
L. Khezami, I. Lounissi, A. Hajjaji, A. Guesmi, A.A. Assadi, B. Bessais, Synthesis and Characterization of TiO2 Nanotubes (TiO2-NTs) Decorated with Platine Nanoparticles (Pt-NPs): Photocatalytic Performance for Simultaneous Removal of Microorganisms and Volatile Organic Compounds, Materials. 14 (2021) 7341.
DOI: 10.3390/ma14237341
Google Scholar
[13]
B. Dréno, A. Alexis, B. Chuberre, M. Marinovich, Safety of titanium dioxide nanoparticles in cosmetics, J. Eur. Acad. Dermatol. Venereol. 33 (2019) 34–46.
DOI: 10.1111/jdv.15943
Google Scholar
[14]
G. de Souza Castro, W. de Souza, T.S.M. Lima, D.C. Bonfim, J. Werckmann, B.S. Archanjo, J.M. Granjeiro, A.R. Ribeiro, The effects of titanium dioxide nanoparticles on osteoblasts' mineralization: A comparison between 2D and 3D cell culture models, Nanomaterials. 13 (2023) 425.
DOI: 10.3390/nano13030425
Google Scholar
[15]
A. Pagano, M. Cabianca, R. Pozzoli, P. Petrone, A. Boitano, M. Bini, A. Degan, M. Maioli, A. Mastore, Understanding the toxicological effects of TiO₂ nanoparticles extracted from sunscreens on human keratinocytes and skin explants, Free Radic. Biol. Med. 183 (2022)127-137.
DOI: 10.32657/10356/175588
Google Scholar
[16]
M.V. Vaudagna, V. Aiassa, A. Marcotti, M.F. Ponce Beti, M.F. Constantin, M.F. Perez, A. Zoppi, M.C. Becerra, M.J. Silvero, Titanium Dioxide Nanoparticles in sunscreens and skin photo-damage: Development, synthesis and characterization of a novel biocompatible alternative based on their in vitro and in vivo study, J. Photochem. Photobiol. C: Photochem. Rev. 15 (2023) 1–8.
DOI: 10.1016/j.jpap.2023.100173
Google Scholar
[17]
C. Cole, T. Shyr, H. Ou-Yang, Metal oxide sunscreens protect skin by absorption, not by reflection or scattering, Photodermatol. Photoimmunol. Photomed. 32 (2016) 5–10.
DOI: 10.1111/phpp.12214
Google Scholar
[18]
M. Wei, X. He, N. Liu, H. Deng, Role of reactive oxygen species in ultraviolet-induced photodamage of the skin, Cell Div. 19 (2024) 1-9.
DOI: 10.1186/s13008-024-00107-z
Google Scholar
[19]
M. Rajasekar, J. Mary, M. Sivakumar, M. Selvam, Recent developments in sunscreens based on chromophore compounds and nanoparticles, RSC Adv. 14 (2024) 2529–2563.
DOI: 10.1039/d3ra08178h
Google Scholar
[20]
Y. Ono and H. Iwahashi, Titanium dioxide nanoparticles impart protection from ultraviolet irradiation to fermenting yeast cells, Biochemistry and Biophysics Reports, 30 (2022) 1-5.
DOI: 10.1016/j.bbrep.2022.101221
Google Scholar
[21]
O. Kose, M. Tomatis, L. Leclerc, NB. Belblidia, JF. Hochepied, F. Turci, J. Pourchez, V. Forest. Impact of the Physicochemical Features of TiO2 Nanoparticles on Their In Vitro Toxicity. Chem Res Toxicol. 33 (2020) 2324-2337.
DOI: 10.1021/acs.chemrestox.0c00106
Google Scholar
[22]
H. Zare, S. Ahmadi, A. Ghasemi, M. Ghanbari, N. Rabiee, M. Bagherzadeh, M. Karimi, TJ. Webster, MR Hamblin, E. Mostafavi. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine. 16 (2021) 1681-1706.
DOI: 10.2147/ijn.s299448
Google Scholar
[23]
SY. Lee, IS. Koo, HJ. Hwang, DW. Lee, In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models, SLAS Discovery. 28 (2023) 119-137.
DOI: 10.1016/j.slasd.2023.03.006
Google Scholar
[24]
K. Duval, H. Grover, LH. Han, Y. Mou, AF. Pegoraro, J. Fredberg, Z. Chen. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda). 32 (2017) 266-277.
DOI: 10.1152/physiol.00036.2016
Google Scholar
[25]
SA. Langhans. Three-Dimensional in vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol. 9 (2018) 1-14.
DOI: 10.3389/fphar.2018.00006
Google Scholar
[26]
E. Colombo, MG. Cattaneo. Multicellular 3D Models to Study Tumour-Stroma Interactions. Int J Mol Sci. 22 (2021) 1-19.
DOI: 10.3390/ijms22041633
Google Scholar