[1]
A. Blinov, A. Kravtsov, S. Krandievskii, V. Timchenko, A. Gvozdenko, and A. Blinova, Synthesis of MnO2 nanoparticles stabilized by methionine, Russian Journal of General Chemistry, 90 (2020) 283-286.
DOI: 10.1134/s107036322002019x
Google Scholar
[2]
Q. Li, Z.-L. Wang, G.-R. Li, R. Guo, L.-X. Ding, and Y.-X. Tong, Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage, Nano letters. 12 (2012) 3803-3807.
DOI: 10.1021/nl301748m
Google Scholar
[3]
P. Umek et al., Synthesis of 3D hierarchical self-assembled microstructures formed from α-MnO2 nanotubes and their conducting and magnetic properties, The Journal of Physical Chemistry. 113 (2009) 14798-14803.
DOI: 10.1021/jp9050319
Google Scholar
[4]
S. Walia et al., MnO2-based thermopower wave sources with exceptionally large output voltages, The Journal of Physical Chemistry C. 117 (2013) 9137-9142.
DOI: 10.1021/jp401731b
Google Scholar
[5]
Y. Omomo, T. Sasaki, L. Wang, and M. Watanabe, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide, Journal of the American Chemical Society. 125 (2003) 3568-3575.
DOI: 10.1021/ja021364p
Google Scholar
[6]
A. K. Sinha, M. Pradhan, and T. Pal, Morphological evolution of two-dimensional MnO2 nanosheets and their shape transformation to one-dimensional ultralong MnO2 nanowires for robust catalytic activity, The Journal of Physical Chemistry C. 117 (2013) 23976-23986.
DOI: 10.1021/jp403527p
Google Scholar
[7]
D. Yu et al., In situ growth of Co 3 O 4 nanoparticles on α-MnO 2 nanotubes: a new hybrid for high-performance supercapacitors, Journal of Materials Chemistry A. 2 (2014) 8465-8471.
Google Scholar
[8]
N. Wang, X. Cao, G. Lin, and Y. Shihe, λ-MnO2 nanodisks and their magnetic properties, Nanotechnology. 18 (2007) 475605.
DOI: 10.1088/0957-4484/18/47/475605
Google Scholar
[9]
X. Duan, J. Yang, H. Gao, J. Ma, L. Jiao, and W. Zheng, Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties, CrystEngComm. 14 (2012) 4196-4204.
DOI: 10.1039/c2ce06587h
Google Scholar
[10]
S. Liang, F. Teng, G. Bulgan, R. Zong, and Y. Zhu, Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation, The Journal of Physical Chemistry C. 112 (2008) 5307-5315.
DOI: 10.1021/jp0774995
Google Scholar
[11]
D. Ghosh, S. Bhandari, and D. Khastgir, Synthesis of MnO 2 nanoparticles and their effective utilization as UV protectors for outdoor high voltage polymeric insulators used in power transmission lines, Physical Chemistry Chemical Physics. 18 (2016) 32876-32890.
DOI: 10.1039/c6cp06611a
Google Scholar
[12]
M. Xu, L. Kong, W. Zhou, and H. Li, Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins, The Journal of Physical Chemistry C. 111 (2007) 19141-19147.
DOI: 10.1021/jp076730b
Google Scholar
[13]
H.-W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, and D. K. Kim, Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries, Nano letters. 10 (2010) 3852-3856.
DOI: 10.1021/nl101047f
Google Scholar
[14]
D. Sun, J. Chen, J. Yang, and X. Yan, Morphology and crystallinity-controlled synthesis of MnO 2 hierarchical nanostructures and their application in lithium ion batteries, Cryst. Eng. Comm. 16 (2014) 10476-10484.
DOI: 10.1039/c4ce01604a
Google Scholar
[15]
C. Rao, S. Vivekchand, K. Biswas, and A. Govindaraj, Synthesis of inorganic nanomaterials, Dalton Transactions. (2007) 3728-3749.
DOI: 10.1039/b708342d
Google Scholar
[16]
W. Xiao, D. Wang, and X. W. Lou, Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction, The Journal of Physical Chemistry C. 114 (2010) 1694-1700.
DOI: 10.1021/jp909386d
Google Scholar
[17]
G.-L. Xu et al., Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries, Chemical communications. vol. 48, no. 68, pp.8502-8504, 2012.
DOI: 10.1039/c2cc34218a
Google Scholar
[18]
D. Yan et al., Self-assembled flower-like hierarchical spheres and nanobelts of manganese oxide by hydrothermal method and morphology control of them, Chemical Physics Letters. 440 (2007) 134-138.
DOI: 10.1016/j.cplett.2007.04.027
Google Scholar
[19]
X. Wang and Y. Li, Synthesis and formation mechanism of manganese dioxide nanowires/nanorods, Chemistry–A European Journal. 9 (2003) 300-306.
DOI: 10.1002/chem.200390024
Google Scholar
[20]
S. Ching, E. J. Welch, S. M. Hughes, A. B. Bahadoor, and S. L. Suib, Nonaqueous sol− gel syntheses of microporous manganese oxides, Chemistry of materials. 14 (2002) 1292-1299.
DOI: 10.1021/cm010780q
Google Scholar
[21]
X. Yu et al., Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential, Electrochemistry Communications. 11 (2009) 791-794.
DOI: 10.1016/j.elecom.2009.01.040
Google Scholar
[22]
P. Yu, X. Zhang, D. Wang, L. Wang, and Y. Ma, Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors, Crystal Growth and Design. 9 (2009) 528-533.
DOI: 10.1021/cg800834g
Google Scholar
[23]
X. Liu, C. Chen, Y. Zhao, and B. Jia, A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries, Journal of Nanomaterials. 2013, 2013.
DOI: 10.1155/2013/736375
Google Scholar
[24]
K. Byrappa and T. Adschiri, Hydrothermal technology for nanotechnology, Progress in crystal growth and characterization of materials. 53 (2007) 117-166.
DOI: 10.1016/j.pcrysgrow.2007.04.001
Google Scholar
[25]
G. Cao, L. Su, X. Zhang, and H. Li, Hydrothermal synthesis and catalytic properties of α-and β-MnO2 nanorods, Materials Research Bulletin. 45 (2010) 425-428.
DOI: 10.1016/j.materresbull.2009.12.016
Google Scholar
[26]
G. Cheng et al., Controlled synthesis of α-MnO2 nanowires and their catalytic performance for toluene combustion, Materials Research Bulletin. 75 (2016) 17-24.
Google Scholar