[1]
A.A. Boateng, Rotary Kilns: Transport Phenomena and Transport Processes, Butterworth-Heinemann, Oxford, (2008).
Google Scholar
[2]
M. González Martínez, C. Dupont, A. Anca-Couce, D. da Silva Perez, G. Boissonnet, S. Thiéry, X. Meyer, C. Gourdon, Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 2: Torrefaction model, Energy. 210 (2020).
DOI: 10.1016/j.energy.2020.118451
Google Scholar
[3]
Y. Niu, Y. Lv, Y. Lei, S. Liu, Y. Liang, D. Wang, S. Hui, Biomass torrefaction: properties, applications, challenges, and economy, Renew. Sustain. Energy Rev. 115 (2019).
DOI: 10.1016/j.rser.2019.109395
Google Scholar
[4]
S. Zhang, T. Chen, Y. Xiong, Q. Dong, Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk, Energy Convers. Manag. 141 (2017) 403–409.
DOI: 10.1016/j.enconman.2016.10.002
Google Scholar
[5]
D. Chen, A. Gao, Z. Ma, D. Fei, Y. Chang, C. Shen, In-depth study of rice husk torrefaction: Characterization of solid, liquid and gaseous products, oxygen migration and energy yield, Bioresour. Technol. 253 (2018) 148–153.
DOI: 10.1016/j.biortech.2018.01.009
Google Scholar
[6]
D. Chen, F. Chen, K. Cen, X. Cao, J. Zhang, J. Zhou, Upgrading rice husk via oxidative torrefaction: Characterization of solid, liquid, gaseous products and a comparison with non-oxidative torrefaction, Fuel. 275 (2020) 117936.
DOI: 10.1016/j.fuel.2020.117936
Google Scholar
[7]
D. Chen, J. Zhou, Q. Zhang, X. Zhu, Q. Lu, Upgrading of rice husk by torrefaction and its influence on the fuel properties, BioResources. 9 (2014) 5893–5905.
DOI: 10.15376/biores.9.4.5893-5905
Google Scholar
[8]
D. Chen, J. Zhou, Q. Zhang, X. Zhu, Q. Lu, Torrefaction of rice husk using TG-FTIR and its effect on the fuel characteristics, carbon, and energy yields, BioResources. 9 (2014) 6241–6253.
DOI: 10.15376/biores.9.4.6241-6253
Google Scholar
[9]
S.X. Li, C.Z. Chen, M.F. Li, X. Xiao, Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres, Bioresour. Technol. 249 (2018) 348–353.
DOI: 10.1016/j.biortech.2017.10.026
Google Scholar
[10]
J.J. Lu, W.H. Chen, Product yields and characteristics of corncob waste under various torrefaction atmospheres, Energies. 7 (2014) 13–27.
DOI: 10.3390/en7010013
Google Scholar
[11]
M. Asadullah, A.M. Adi, N. Suhada, N.H. Malek, M.I. Saringat, A. Azdarpour, Optimization of palm kernel shell torrefaction to produce energy densified bio-coal, Energy Convers. Manag. 88 (2014) 1086–1093.
DOI: 10.1016/j.enconman.2014.04.071
Google Scholar
[12]
R. Junga, J. Pospolita, P. Niemiec, Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation, Renew. Energy. 147 (2020) 1239–1250.
DOI: 10.1016/j.renene.2019.09.060
Google Scholar
[13]
N. Thuchayapong, N. Tharawadee, N. Chatwiboonkul, Effect of Torrefaction Process on Properties of Palm Kernel Shell by Using Torrefaction Rotary Kiln, WIT Transactions on Ecology and the Environment, 254, WIT Press, UK, (2021), 137–148.
DOI: 10.2495/esus210131
Google Scholar
[14]
N. Tharawadee, N. Thuchayapong, Effects of Torrefaction Process on Physical Properties and Operating Cost of Biomass Powder, J. Res. Appl. Mech. Eng. 3 (2015) 14456.
Google Scholar
[15]
Y. Mei, R. Liu, Q. Yang, H. Yang, J. Shao, C. Draper, S. Zhang, H. Chen, Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas, Bioresour. Technol. 177 (2015) 355–360.
DOI: 10.1016/j.biortech.2014.10.113
Google Scholar
[16]
M.J. Wang, Y.F. Huang, P.T. Chiueh, W.H. Kuan, S.L. Lo, Microwave-induced torrefaction of rice husk and sugarcane residues, Energy. 37 (2012) 177–184.
DOI: 10.1016/j.energy.2011.11.053
Google Scholar
[17]
N. Soponpongpipat, S. Nanetoe, P. Comsawang, Thermal degradation of cassava rhizome in thermosyphon-fixed bed torrefaction reactor, Processes. 8 (2020).
DOI: 10.3390/pr8030267
Google Scholar
[18]
N. Soponpongpipat, S. Nanetoe, P. Comsawang, Thermal and torrefaction characteristics of a small-scale rotating drum reactor, Processes. 8 (2020).
DOI: 10.3390/pr8040489
Google Scholar
[19]
P. Meena, S. Rittidech, Waste Heat Recovery by Closed-Loop Oscillating Heat Pipe with Check Valve from Pottery Kilns for Energy Thrift, Mahasarakham University, Thailand, 2008.
DOI: 10.3844/ajeassp.2008.126.130
Google Scholar
[20]
R. Qgulata, Utilization of Waste-Heat Recovery in Textile Drying, Cukurova University, Faculty of Engineering and Architecture, Turkey, 2004.
Google Scholar
[21]
J. Hirunlabh, S. Thiebrat, J. Khedari, Chili and Garlic Drying by Using Waste Heat Recovery from a Geothermal Power Plant, King Mongkut's University of Technology, Thailand, 2004.
Google Scholar
[22]
H. Li, Q. Chen, X. Zhang, K. Finney, V. Sharifi, J. Swithenbank, Evaluation of a Biomass Drying Process Using Waste Heat from Process Industries, University of Sheffield, UK, 2011.
DOI: 10.1016/j.applthermaleng.2011.10.009
Google Scholar
[23]
S. Ai, B. Wang, X. Li, W. Shi, Analysis of a Heat Recovery System of the Spray-Drying Process in a Soy Protein Powder Plant, Tsinghua University, China, 2016.
DOI: 10.1016/j.applthermaleng.2016.04.108
Google Scholar
[24]
Q. Yin, Q. Chen, D. Ji, L. Cheng, Design Requirements and Performance Optimization of Waste Heat Recovery Systems for Rotary Kilns, Int. J. Heat Mass Transfer. 97 (2016) 525–537.
DOI: 10.1016/j.ijheatmasstransfer.2015.08.078
Google Scholar