[1]
M. N. Özişik, H-R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications. Taylor & Francis, 2000.
Google Scholar
[2]
A. Jahanbin, G. Semprini, A.N. Impiombato, C. Biserni, E. Rossi di Schio, Effects of the circuit arrangement on the thermal performance of double U-tube ground heat exchangers. Energies. 13 (2020) 3275.
DOI: 10.3390/en13123275
Google Scholar
[3]
C. Naldi, E. Zanchini, Full-Time-Scale Fluid-to-Ground Thermal Response of a Borefield with Uniform Fluid Temperature. Energies. 12 (2019) 3750.
DOI: 10.3390/en12193750
Google Scholar
[4]
V. Ballerini, E. Rossi di Schio, P. Valdiserri, C. Naldi, M. Dongellini, A Long-Term Dynamic Analysis of Heat Pumps Coupled to Ground Heated by Solar Collectors. Applied Sciences. 13 (2023) 7651.
DOI: 10.3390/app13137651
Google Scholar
[5]
E. Rossi di Schio, S. Lazzari, S., A. Abbati, Natural convection effects in the heat transfer from a buried pipeline. Applied Thermal Engineering. 102 (2016) 227-233.
DOI: 10.1016/j.applthermaleng.2016.03.140
Google Scholar
[6]
S.W. Rees, M.H. Adjali, Z. Zhou, M. Davies, H.R. Thomas, Ground heat transfer effects on the thermal performance of earth-contact structures. Renewable and Sustainable Energy Reviews. 4 (2000) 213-265.
DOI: 10.1016/s1364-0321(99)00018-0
Google Scholar
[7]
E.J. Nascimento, E. dos Santos Magalhães, L.E. dos Santos Paes, Estimation of thermal properties at high temperatures through the application of radial basis function interpolation in an inverse heat transfer problem. International Communications in Heat and Mass Transfer, 161 (2025), 108482.
DOI: 10.1016/j.icheatmasstransfer.2024.108482
Google Scholar
[8]
L.B. Dantas, H.R.B. Orlande, R.M. Cotta, An inverse problem of parameter estimation for heat and mass transfer in capillary porous media. International Journal of Heat and Mass Transfer. 46 (2003) 1587-1598.
DOI: 10.1016/s0017-9310(02)00424-6
Google Scholar
[9]
P. DuChateau, An inverse problem for the hydraulic properties of porous media. SIAM Journal on Mathematical Analysis. 28 (1997) 611-632.
DOI: 10.1137/s0036141095285673
Google Scholar
[10]
E. R. Di Schio, M. Celli, I. Pop, Buoyant flow in a vertical fluid saturated porous annulus: The Brinkman model. International Journal of Heat and Mass Transfer. 54 (2011) 1665-1670.
DOI: 10.1016/j.ijheatmasstransfer.2010.11.014
Google Scholar
[11]
J.V. Beck, B. Blackwell, C.R. St. Clair Jr., Inverse Heat Conduction: Ill-posed Problems, Wiley, 1985.
Google Scholar
[12]
X. Wang, I. Perreard, Bayesian inference for thermal diffusivity using transient experiments. International Journal of Heat and Mass Transfer. 171 (2021) 121050.
Google Scholar
[13]
B. Jin, J. Zou, A regularized total least squares method for a sideways heat equation. Inverse Problems. 25 (2009) 045009.
Google Scholar
[14]
G. Lorenzini, L.A.O. Rocha, C. Biserni, E.D. Dos Santos, L.A. Isoldi, Constructal design of cavities inserted into a cylindrical solid body. ASME Journal of Heat Transfer. 134 (2012) 071301.
DOI: 10.1115/1.4006103
Google Scholar
[15]
G. Lorenzini, C. Biserni, L.A.O. Rocha, Geometric optimization of isothermal cavities according to Bejan's theory. International Journal of Heat and Mass Transfer. 54 (2011) 3868-3873.
DOI: 10.1016/j.ijheatmasstransfer.2011.04.042
Google Scholar
[16]
L.A. O. Rocha, G. Lorenzini, C. Biserni, Y. Cho, Constructal design of a cavity cooled by convection. Int. J. Design and Ecodynamics. 5 (2010) 212-220.
DOI: 10.2495/dne-v5-n3-212-220
Google Scholar
[17]
G. Lorenzini, C. Biserni, A Vapotron Effect application for electronic equipment cooling. ASME Journal of Electronic Packaging. 125 (2003) 475-479.
DOI: 10.1115/1.1615796
Google Scholar
[18]
T. Mauder, J. Kůdela L. Klimeš, M. Zálešák, P. Charvát, Soft computing methods in the solution of an inverse heat transfer problem with phase change: A comparative study. Engineering Applications of Artificial Intelligence. 133, Part B (2024) 108229.
DOI: 10.1016/j.engappai.2024.108229
Google Scholar
[19]
C.A. Brebbia, J.C.J. Telles, L.C. Wrobel – Boundary Element Techniques. Theory and Applications in Engineering. Springer-Verlag,1984.
Google Scholar
[20]
D. Petit, D. Maillet, Estimation of thermal boundary conditions at the surface of a sample subjected to an oxygen-acetylene flame, French Thermal Engineering Conference, Thermal Engineering in Extreme Conditions, Bordeaux, France, January 2012.
Google Scholar