Numerical Analysis of Innovative Systems for Thermal Management of Li-Ion Batteries Using Phase Change Materials

Article Preview

Abstract:

This work numerically studies the thermal management of a Li-ion battery pack using Phase Change Materials (PCMs) with two different modelling approaches. Specifically, the results obtained with the Enthalpy-Porosity method, implemented in the tool STAR-CCM+, are compared with those yielded by the Apparent Heat Capacity formulation, employed by COMSOL Multiphysics. Both models are first validated against benchmark cases found in the literature. The study then focuses on the thermal behaviour of a battery pack composed of four 21700 Li-ion battery cells, cooled using the paraffinic PCM RT35. The numerical results show that, while natural convection in the liquid PCM accelerates the melting process, it leads to a non-uniform temperature distribution, particularly disadvantageous for cells located in the upper part of the battery pack. In addition, although both numerical approaches show good agreement between their results, especially in capturing the overall thermal behaviour, some minor differences in the temperature profiles during the PCM phase change still emerge.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-278

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Jiang, G. Liao, E. Jiaqiang, F. Zhang, J. Chen, E. Leng, Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review, J. Energy Storage. 32 (2020) 101816.

DOI: 10.1016/j.est.2020.101816

Google Scholar

[2] H. Liu, Z. Wei, W. He, et al., Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review, Energy Convers. Manage. 150 (2017) 304–330.

DOI: 10.1016/j.enconman.2017.08.016

Google Scholar

[3] C. Capasso and O. Veneri, Experimental analysis on the performance of lithium-based batteries for road full electric and hybrid vehicles, Applied Energy, 136 (2014) 921-930.

DOI: 10.1016/j.apenergy.2014.04.013

Google Scholar

[4] Fu, P., Zhao, L., Wang, X., Sun, J., Xin, Z. A Review of Cooling Technologies in Lithium-Ion Power Battery Thermal Management Systems for New Energy Vehicles. Processes, 11 (2023) 3450.

DOI: 10.3390/pr11123450

Google Scholar

[5] S. Baazouzi, N. Feistel, J. Wanner, I. Landwehr, A. Fill, K. P. Birke, Design, Properties, and Manufacturing of Cylindrical Li-Ion Battery Cells—A Generic Overview, Batteries. 9 (2023) 309.

DOI: 10.3390/batteries9060309

Google Scholar

[6] J. Kim, J. Oh, H. Lee, Review on battery thermal management system for electric vehicles, Applied Thermal Engineering. 149 (2019) 192-212.

DOI: 10.1016/j.applthermaleng.2018.12.020

Google Scholar

[7] P. Ramadass, B. Haran, R. White, B. N. Popov, Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. 112 (2002) 606-613.

DOI: 10.1016/s0378-7753(02)00474-3

Google Scholar

[8] Z. Lu, X. Yu, L. Wei, Y. Qiu, L. Zhang, X. Meng, L. Jin, Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement, Appl. Therm. Eng. 136 (2018) 28–40.

DOI: 10.1016/j.applthermaleng.2018.02.080

Google Scholar

[9] S. Wu, L. Lao, L. Wu, L. Liu, C. Lin, Q. Zhang, Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling, Applied Thermal Engineering 201 (2022) 117788.

DOI: 10.1016/j.applthermaleng.2021.117788

Google Scholar

[10] C. Liu, D. Xu, J. Weng, S. Zhou, W. Li, Y. Wan, S. Jiang, D. Zhou, J. Wang, Q. Huang, Phase Change Materials Application in Battery Thermal Management System: A Review, Materials 13 (2020) 4622.

DOI: 10.3390/ma13204622

Google Scholar

[11] S. Vashisht and D. Rakshit, Comparative analysis of passive cooling strategies for enhanced Li-ion cell thermal management, Energy Proceedings, 50 (2025) 2004-2965.

DOI: 10.46855/energy-proceedings-11434

Google Scholar

[12] D. Kong, G. Wang, P. Ping, J. Wen, Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions. Applied Thermal Engineering 189 (2021) 116661.

DOI: 10.1016/j.applthermaleng.2021.116661

Google Scholar

[13] K. Darcovich, D. D. MacNeil, S. Recoskie, Q. Cadic, F. Ilinca, B. Kenney, Coupled Numerical Approach for Automotive Battery Pack Lifetime Estimates with Thermal Management. J. Electrochem. Energy Convers. Storage. 15 (2018) 021004.

DOI: 10.1115/1.4038631

Google Scholar

[14] W. Wu, J. Liu, M. Liu, Z. Rao, H. Deng, Q. Wang, X. Qi, S. Wang, An innovative battery thermal management with thermally induced flexible phase change material, Energy Conversion and Management. 221 (2020) 113145.

DOI: 10.1016/j.enconman.2020.113145

Google Scholar

[15] A. Laouer, N. Boulaktout, E. H. Mezaache, S. Laouar, Study of Natural Convection Melting of Phase Change Material inside a Rectangular Cavity with Non-Uniformly Heated Wall, Defect and Diffusion Forum. 406 (2021) 3-11

DOI: 10.4028/www.scientific.net/ddf.406.3

Google Scholar

[16] Y. Khattari, T. El Rhafiki, N. Choab, T. Kousksou, M. Alaphilippe, Y. Zeraouli, Apparent heat capacity method to investigate heat transfer in a composite phase change material, Journal of Energy Storage. 28 (2020) 101239.

DOI: 10.1016/j.est.2020.101239

Google Scholar

[17] F. Faistauer, P. Rodrigues, R. Oliveski, Numerical Study of Phase Change of PCM in Spherical Cavities. Defect and Diffusion Forum. 372 (2017) 21–30.

DOI: 10.4028/www.scientific.net/ddf.372.21

Google Scholar

[18] J. B. Quinn, T. Waldmann, K. Richter, M. Kasper, M. Wohlfahrt-Mehrens, Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells, Journal of The Electrochemical Society. 165 (2018) 3284-3291.

DOI: 10.1149/2.0281814jes

Google Scholar

[19] C. Reichl, S. Both, P. Mascherbauer, J. Emhofer, Comparison of Two CFD Approaches Using Constant and Temperature Dependent Heat Capacities during the Phase Transition in PCMs with Experimental and Analytical Results, Processes, 2022, 10, 302.

DOI: 10.3390/pr10020302

Google Scholar

[20] Techdata_-RT35_EN_18042024.PDF

Google Scholar

[21] S. Ebadi, M. Al-Jethelah, S. H. Tasnim, S. Mahmud, An investigation of the melting process of RT-35 filled circular thermal energy storage system, Open Physics. 16 (2018) 574-580.

DOI: 10.1515/phys-2018-0075

Google Scholar

[22] M. Falcone, E. Palka Bayard De Volo, A. Hellany, C. Rossi, B. Pulvirenti, Lithium-Ion Battery Thermal Management Systems: A Survey and New CFD Results, Batteries. 7 (2021) 86.

DOI: 10.3390/batteries7040086

Google Scholar

[23] COMSOL Multiphysics, https://www.comsol.com/ (last accessed on June 30, 2025).

Google Scholar

[24] STAR-CCM+, Simcenter STAR-CCM+ CFD software | Siemens Software (last accessed on June 30, 2025).

Google Scholar

[25] X. Wang, L. Zhang, T. Muc, S. Song, W. Zhang, L. Zhang, W Lei, G. Y. Sun, Simulation on paraffin melting enhancement in shell-tube phase change thermal storage equipment induced by natural convection, Case Studies in Thermal Engineering. 58 (2024) 104432.

DOI: 10.1016/j.csite.2024.104432

Google Scholar

[26] G. Kovács, S. K. Szürke, S. Fischer, Investigation of Convective and Radiative Heat Transfer of 21700 Lithium-Ion Battery Cells, Batteries, 11, (2025), 246.

DOI: 10.3390/batteries11070246

Google Scholar

[27] Y. Ezzat and A. A. Abdel-Rehim, Numerical modelling of lauric acid phase change material using iterative and non-iterative time-advancement schemes, Journal of Energy Storage. 53 (2022) 105173.

DOI: 10.1016/j.est.2022.105173

Google Scholar