[1]
K. Jiang, G. Liao, E. Jiaqiang, F. Zhang, J. Chen, E. Leng, Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review, J. Energy Storage. 32 (2020) 101816.
DOI: 10.1016/j.est.2020.101816
Google Scholar
[2]
H. Liu, Z. Wei, W. He, et al., Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review, Energy Convers. Manage. 150 (2017) 304–330.
DOI: 10.1016/j.enconman.2017.08.016
Google Scholar
[3]
C. Capasso and O. Veneri, Experimental analysis on the performance of lithium-based batteries for road full electric and hybrid vehicles, Applied Energy, 136 (2014) 921-930.
DOI: 10.1016/j.apenergy.2014.04.013
Google Scholar
[4]
Fu, P., Zhao, L., Wang, X., Sun, J., Xin, Z. A Review of Cooling Technologies in Lithium-Ion Power Battery Thermal Management Systems for New Energy Vehicles. Processes, 11 (2023) 3450.
DOI: 10.3390/pr11123450
Google Scholar
[5]
S. Baazouzi, N. Feistel, J. Wanner, I. Landwehr, A. Fill, K. P. Birke, Design, Properties, and Manufacturing of Cylindrical Li-Ion Battery Cells—A Generic Overview, Batteries. 9 (2023) 309.
DOI: 10.3390/batteries9060309
Google Scholar
[6]
J. Kim, J. Oh, H. Lee, Review on battery thermal management system for electric vehicles, Applied Thermal Engineering. 149 (2019) 192-212.
DOI: 10.1016/j.applthermaleng.2018.12.020
Google Scholar
[7]
P. Ramadass, B. Haran, R. White, B. N. Popov, Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. 112 (2002) 606-613.
DOI: 10.1016/s0378-7753(02)00474-3
Google Scholar
[8]
Z. Lu, X. Yu, L. Wei, Y. Qiu, L. Zhang, X. Meng, L. Jin, Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement, Appl. Therm. Eng. 136 (2018) 28–40.
DOI: 10.1016/j.applthermaleng.2018.02.080
Google Scholar
[9]
S. Wu, L. Lao, L. Wu, L. Liu, C. Lin, Q. Zhang, Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling, Applied Thermal Engineering 201 (2022) 117788.
DOI: 10.1016/j.applthermaleng.2021.117788
Google Scholar
[10]
C. Liu, D. Xu, J. Weng, S. Zhou, W. Li, Y. Wan, S. Jiang, D. Zhou, J. Wang, Q. Huang, Phase Change Materials Application in Battery Thermal Management System: A Review, Materials 13 (2020) 4622.
DOI: 10.3390/ma13204622
Google Scholar
[11]
S. Vashisht and D. Rakshit, Comparative analysis of passive cooling strategies for enhanced Li-ion cell thermal management, Energy Proceedings, 50 (2025) 2004-2965.
DOI: 10.46855/energy-proceedings-11434
Google Scholar
[12]
D. Kong, G. Wang, P. Ping, J. Wen, Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions. Applied Thermal Engineering 189 (2021) 116661.
DOI: 10.1016/j.applthermaleng.2021.116661
Google Scholar
[13]
K. Darcovich, D. D. MacNeil, S. Recoskie, Q. Cadic, F. Ilinca, B. Kenney, Coupled Numerical Approach for Automotive Battery Pack Lifetime Estimates with Thermal Management. J. Electrochem. Energy Convers. Storage. 15 (2018) 021004.
DOI: 10.1115/1.4038631
Google Scholar
[14]
W. Wu, J. Liu, M. Liu, Z. Rao, H. Deng, Q. Wang, X. Qi, S. Wang, An innovative battery thermal management with thermally induced flexible phase change material, Energy Conversion and Management. 221 (2020) 113145.
DOI: 10.1016/j.enconman.2020.113145
Google Scholar
[15]
A. Laouer, N. Boulaktout, E. H. Mezaache, S. Laouar, Study of Natural Convection Melting of Phase Change Material inside a Rectangular Cavity with Non-Uniformly Heated Wall, Defect and Diffusion Forum. 406 (2021) 3-11
DOI: 10.4028/www.scientific.net/ddf.406.3
Google Scholar
[16]
Y. Khattari, T. El Rhafiki, N. Choab, T. Kousksou, M. Alaphilippe, Y. Zeraouli, Apparent heat capacity method to investigate heat transfer in a composite phase change material, Journal of Energy Storage. 28 (2020) 101239.
DOI: 10.1016/j.est.2020.101239
Google Scholar
[17]
F. Faistauer, P. Rodrigues, R. Oliveski, Numerical Study of Phase Change of PCM in Spherical Cavities. Defect and Diffusion Forum. 372 (2017) 21–30.
DOI: 10.4028/www.scientific.net/ddf.372.21
Google Scholar
[18]
J. B. Quinn, T. Waldmann, K. Richter, M. Kasper, M. Wohlfahrt-Mehrens, Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells, Journal of The Electrochemical Society. 165 (2018) 3284-3291.
DOI: 10.1149/2.0281814jes
Google Scholar
[19]
C. Reichl, S. Both, P. Mascherbauer, J. Emhofer, Comparison of Two CFD Approaches Using Constant and Temperature Dependent Heat Capacities during the Phase Transition in PCMs with Experimental and Analytical Results, Processes, 2022, 10, 302.
DOI: 10.3390/pr10020302
Google Scholar
[20]
Techdata_-RT35_EN_18042024.PDF
Google Scholar
[21]
S. Ebadi, M. Al-Jethelah, S. H. Tasnim, S. Mahmud, An investigation of the melting process of RT-35 filled circular thermal energy storage system, Open Physics. 16 (2018) 574-580.
DOI: 10.1515/phys-2018-0075
Google Scholar
[22]
M. Falcone, E. Palka Bayard De Volo, A. Hellany, C. Rossi, B. Pulvirenti, Lithium-Ion Battery Thermal Management Systems: A Survey and New CFD Results, Batteries. 7 (2021) 86.
DOI: 10.3390/batteries7040086
Google Scholar
[23]
COMSOL Multiphysics, https://www.comsol.com/ (last accessed on June 30, 2025).
Google Scholar
[24]
STAR-CCM+, Simcenter STAR-CCM+ CFD software | Siemens Software (last accessed on June 30, 2025).
Google Scholar
[25]
X. Wang, L. Zhang, T. Muc, S. Song, W. Zhang, L. Zhang, W Lei, G. Y. Sun, Simulation on paraffin melting enhancement in shell-tube phase change thermal storage equipment induced by natural convection, Case Studies in Thermal Engineering. 58 (2024) 104432.
DOI: 10.1016/j.csite.2024.104432
Google Scholar
[26]
G. Kovács, S. K. Szürke, S. Fischer, Investigation of Convective and Radiative Heat Transfer of 21700 Lithium-Ion Battery Cells, Batteries, 11, (2025), 246.
DOI: 10.3390/batteries11070246
Google Scholar
[27]
Y. Ezzat and A. A. Abdel-Rehim, Numerical modelling of lauric acid phase change material using iterative and non-iterative time-advancement schemes, Journal of Energy Storage. 53 (2022) 105173.
DOI: 10.1016/j.est.2022.105173
Google Scholar