[1]
M.A.C. LIMA, S.M. SILVA, V.R. OLIVEIRA, et al. Umbu—Spondias tuberosa. In: RODRIGUES, S.; SILVA, E. O.; BRITO, E. S. Exotic Fruits: Reference Guide, Elsevier, 2018, v. 1, pp.427-433.
DOI: 10.1016/b978-0-12-803138-4.00057-5
Google Scholar
[2]
F.R.C BATISTA, S.M. SILVA, M.F.S. SANTANA, et al. O umbuzeiro e o semiárido brasileiro. Campina Grande: INSA, 2015.
Google Scholar
[3]
K.S. GANESH, A. SRIDHAR, S. VISHALI, Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review. Chemosphere. 287 (2022) 132221.
DOI: 10.1016/j.chemosphere.2021.132221
Google Scholar
[4]
A.K. ANAL, Food Processing By-Products and their Utilization: Introduction. In: ANAL, A.K. Food Processing By‐Products and their Utilization, John Wiley & Sons Ltd, 2017, v. 1, pp.1-10.
DOI: 10.1002/9781118432921.ch1
Google Scholar
[5]
M. RAMÍREZ-CARMONA, L. RENDÓN-CASTRILLÓN, C. OCAMPO-LÓPEZ, D. SÁNCHEZ-OSORNO, Fish Food Production using Agro-Industrial Waste Enhanced with Spirulina sp. Sustainability. 14 (2022) 6059.
DOI: 10.3390/su14106059
Google Scholar
[6]
E.A. NASCIMENTO, E.A. MELO, V.L.A.G. LIMA, Ice Cream with Functional Potential Added Grape Agro-Industrial Waste. Journal of Culinary Science & Technology. 16 (2018) 128-148.
DOI: 10.1080/15428052.2017.1363107
Google Scholar
[7]
M.F.O. MATIAS, E.L. OLIVEIRA, E. GERTRUDES, & M.A. MAGALHÃES, Use of fibres obtained from the cashew (Anacardium ocidentale,) and guava (Psidium guayava) fruits for enrichment of food products. Brazilian Archives of Biology and Technology. 48 (2005) 143 - 150.
DOI: 10.1590/s1516-89132005000400018
Google Scholar
[8]
M. PATTNAIK, P. PANDEY, G.J.O. MARTIN, H.N. MISHRA, M. ASHOKKUMAR, Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods. 10 (2021) 279.
DOI: 10.3390/foods10020279
Google Scholar
[9]
M.S. TAPIA, S.M. ALZAMORA, J. CHIRIFE, Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In: BARBOSA-CÁNOVAS, G. V.; FONTANA JR., A. J.; SCHMIDT, S. J.; LABUZA, T. P. Water Activity in Foods: Fundamentals and Applications, John Wiley & Sons, Inc, 2020, v. 1, pp.323-355.
DOI: 10.1002/9781118765982.ch14
Google Scholar
[10]
S. KAYRAN, I. DOYMAZ, Determination of drying kinetics and physicochemical characterization of apricot pomace in hot-air dryer. Journal of Thermal Analysis and Calorimetry. 130 (2017) 1163–1170.
DOI: 10.1007/s10973-017-6504-0
Google Scholar
[11]
J.P.L. FERREIRA, A.J.M. QUEIROZ, R.M.F. FIGUEIRÊDO, W.P. SILVA, J.P. GOMES, D.C. SANTOS, H.A. SILVA, A.P.T. ROCHA, A.C.C. PAIVA, A.D.C.G. CHAVES, A.G.B. LIMA, R.O. ANDRADE, Utilization of Cumbeba (Tacinga inamoena) Residue: Drying Kinetics and Effect of Process Conditions on Antioxidant Bioactive Compounds. Foods. 10 (2021) 1–28.
DOI: 10.3390/foods10040788
Google Scholar
[12]
A.V. Luikov, Analytical Heat Diffusion Theory. Academic Press, Inc. Ltd, London, 1968.
Google Scholar
[13]
T.M.Q. OLIVEIRA, R.A. MEDEIROS, V.S.O. FARIAS, et al. Drying Process of Jackfruit Seeds. In: DELGADO, J. M. P.Q.; LIMA, A. G. Transport Processes and Separation Technologies, Springer International Publishing, 2021, v. 133, pp.89-103.
Google Scholar
[14]
A.F. SILVA JUNIOR, W.P. SILVA, J.E.F. AIRES, K.L.C.A.F. AIRES, D.S. CASTRO, Osmotic dehydration kinetics of banana slices considering variable diffusivities and shrinkage. International Journal of Food Properties. 20 (2017) 1313-1325.
DOI: 10.1080/10942912.2016.1209215
Google Scholar
[15]
T.M.Q. OLIVEIRA, A.F. SILVA JUNIOR, V.S.O. FARIAS, et al. Description of drying of jackfruit seed through diffusive models. Journal of Food Processing and Preservation. 46 (2022) e16389.
DOI: 10.1111/jfpp.16389
Google Scholar
[16]
W.P. SILVA, C.M.D.P.S. SILVA, 2009. LAB Fit Curve Fitting Software, V.7.2.46. www.labfit.net.
Google Scholar
[17]
D. LENTZOU, A.G. BOUDOUVIS, V.T. KARATHANOS, G. XANTHOPOULOS, A moving boundary model for fruit isothermal drying and shrinkage: An optimization method for water diffusivity and peel resistance estimation. Journal of Food Engineering. 263 (2019) 299–310.
DOI: 10.1016/j.jfoodeng.2019.07.010
Google Scholar
[18]
M.P. FELIZARDO, G.R.F. MERLO, G.D. MAIA, Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model. Biosystems Engineering. 205 (2021) 234-245.
DOI: 10.1016/j.biosystemseng.2021.03.008
Google Scholar
[19]
M.T.L. PEREIRA, V.S.O. FARIAS, A.F. SILVA JÚNIOR, A.R.N. LIMA, V.B. VIEIRA, R.A. MEDEIROS, W.P. SILVA, C.M.R. FRANCO, J.S.P. ATAÍDE, Analysis of drying of melon peels using numerical solution of the diffusion equation. Journal of Food Process Engineering. 46 (2023) e14267.
DOI: 10.1111/jfpe.14267
Google Scholar