Thermohydraulic Analysis of a Flat-Plane Solar Collector with Fractal Patterns and Allometric Scaling Using CFD

Article Preview

Abstract:

This work presents the numerical analysis of the thermal behavior of a new model of a flat solar collector. The computational model integrates embedded piping configured in a Rhomboid Tessellation Pattern (RTP), with scaling governed by allometric and fractal principles, constrained within a 3 × 3-branched fractal tree structure. The numerical analysis was performed using Computational Fluid Dynamics (CFD) with Autodesk CFD software. The operation of the collector was estimated with water mass flows ranging from 0.01 to 0.06 kg/s, with the water inlet temperature set at 20°C, and analyzed under two simulated solar radiation conditions, 850 and 650 W/m². The studied collector exhibits superior performance compared to traditional collectors. Specifically, it achieves higher fluid temperatures with similar mass flows, even under lower solar radiation conditions. The collector demonstrates thermal performance with efficiencies reaching up to 84.3% for small mass flows. On average, the collector efficiency was 78.1%. The higher thermal efficiency compared to conventional flat plate solar collectors and the reduction in pressure drop by up to 90% compared to traditional collectors make the collector model analyzed in this study a promising option for systems employing solar collectors or collector-evaporators.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-110

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Colangelo, E. Favale, P. Miglietta, A. De Risi, Innovation in flat solar thermal collectors: a review of the last ten years experimental results, Renew. Sustain. Energy Rev. 57 (2016) 1141–1159.

DOI: 10.1016/j.rser.2015.12.142

Google Scholar

[2] A. Ajbar, B. Lamrani, E. Ali, Dynamic Investigation of a Coupled Parabolic Trough Collector-Phase Change Material Tank for Solar Cooling. Energies. 16 (2023) 4235.

DOI: 10.3390/en16104235

Google Scholar

[3] Yi He, et al. "Thermal performance and experimental analysis of stainless-steel flat plate solar collector with full-flow channels." Heliyon 10.7 (2024).

DOI: 10.1016/j.heliyon.2024.e28255

Google Scholar

[4] F.A. Sumair, K. Mohammad, V.R. Mahesh, N. Arshid, K.R. Abdul, M.M. Nabisab, Recent progress in solar water heaters and solar collectors: A comprehensive review. Therm. Sci. Eng. Prog. 25 (2021) 100981.

Google Scholar

[5] X. Sun, Y. Dai, V. Novakovic, J. Wu, R. Wang, Performance comparison of direct expansion solar-assisted heat pump and conventional air source heat pump for domestic hot water. Energy Procedia. 70 (2015) 394–401.

DOI: 10.1016/j.egypro.2015.02.140

Google Scholar

[6] Y.W. Li, R.Z. Wang, J.Y. Wu, Y.X. Xu, Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater. Appl. Therm. Eng. 27 (2007) 2858–2868.

DOI: 10.1016/j.applthermaleng.2006.08.007

Google Scholar

[7] A. Sajid, Y. Yuan, A. Hassan, J. Zhou, C. Zeng, M. Yu, B. Emmanuel, Experimental and numerical investigation on a solar direct-expansion heat pump system employing PV/T & solar thermal collector as evaporator. Energy. 254 (2022) 124312.

DOI: 10.1016/j.energy.2022.124312

Google Scholar

[8] L.R. Jorge, C.M. Ignacio, Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi- Objective Optimization Based on the Energy Demand. Energies. 11 (2018) 1773.

DOI: 10.3390/en11071773

Google Scholar

[9] T. Abhishek, K. Sushil, K. Pawan, K. Sanjeev, A.K. Bhardwaj, A review on the simulation/CFD based studies on the thermal augmentation of flat plate solar collectors. Mater. Today Proc. 46 (2021) 8578–8585.

DOI: 10.1016/j.matpr.2021.03.550

Google Scholar

[10] Z. Badiei, M. Eslami, K. Jafarpur, Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling. Energy. 192 (2020) 116719.

DOI: 10.1016/j.energy.2019.116719

Google Scholar

[11] A. Mohammad, H. Ben, H. Andrew, C. Dominic, Determining the Effect of Inlet Flow Conditions on the Thermal Efficiency of a Flat Plate Solar Collector. Fluids. 3 (2018) 67.

DOI: 10.3390/fluids3030067

Google Scholar

[12] D.G. Gunjo, P. Mahanta, P.S. Robi, Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD análisis. Renew. Energy. 114 (2017) 655–669.

DOI: 10.1016/j.renene.2017.07.072

Google Scholar

[13] P. Primož, T. Urban, P. Nada, V. Boris, F. Uroš, K. Andrej, Numerical and experimental investigation of the energy and exergy performance of solar thermal, photovoltaic and photovoltaic-thermal modules based on roll-bond heat exchangers. Energy Convers. Manag. 210 (2020) 112674.

DOI: 10.1016/j.enconman.2020.112674

Google Scholar

[14] S. Kasuba, A. Suresh, K.R. Kishen, Experimental and computational analysis of radiator and evaporator. Mater. Today Proc. 2 (2015) 2277–2290.

Google Scholar

[15] X. Sun, J. Wu, Y. Dai, R. Wang, Experimental study on roll-bond collector/evaporator with optimized channel used in direct expansion solar assisted heat pump water heating system. Appl. Therm. Eng. 66 (2014) 571–579.

DOI: 10.1016/j.applthermaleng.2014.02.060

Google Scholar

[16] J. Yao, W. Liu, Y. Zhao, Y. Dai, J. Zhu, V. Novakovic, Two-phase flow investigation in channel design of the roll-bond cooling component for solar assisted PVT heat pump application. Energy Convers. Manag. 235 (2021) 113988.

DOI: 10.1016/j.enconman.2021.113988

Google Scholar

[17] N. Aste, D.P. Claudio, L. Fabrizio, Water flat plate PV–thermal collectors: A review. Sol. Energy. 102 (2014) 98–115.

DOI: 10.1016/j.solener.2014.01.025

Google Scholar

[18] A. Miglioli, N. Aste, C. Del Pero, F. Leonforte, Photovoltaic-thermal solar-assisted heat pump systems for building applications: Integration and design methods. Energy Built Environ. 4 (2023) 39–56.

DOI: 10.1016/j.enbenv.2021.07.002

Google Scholar

[19] N. Aste, D.P. Claudio, L. Fabrizio, Thermal-electrical optimization of the configuration a liquid PVT collector. Energy Procedia. 30 (2012) 1–7.

DOI: 10.1016/j.egypro.2012.11.002

Google Scholar

[20] A.N. Al-Shamani, K. Sopian, S. Mat, H.A. Hasan, A.M. Abed, M.H. Ruslan, Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers. Manag. 124 (2016) 528–542.

DOI: 10.1016/j.enconman.2016.07.052

Google Scholar

[21] F. Huide, Z. Xuxin, M. Lei, Z. Tao, W. Qixing, S. Hongyuan, A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems. Energy Convers. Manag. 140 (2017) 1–13.

DOI: 10.1016/j.enconman.2017.02.059

Google Scholar

[22] D. Del Col, A. Padovan, M. Bortolato, M. Dai Prè, E. Zambolin, Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers. Energy. 58 (2013) 258–269.

DOI: 10.1016/j.energy.2013.05.058

Google Scholar

[23] D. Swapnil, A.O. Andrew, Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy Sustain. Dev. 17 (2013) 1–12.

DOI: 10.1016/j.esd.2012.09.001

Google Scholar

[24] I. Guarracino, A. Mellor, N.J. Ekins-Daukes, C.N. Markides, Dynamic coupled thermal-and-electrical modelling of sheet-andtube hybrid photovoltaic/thermal (PVT) collectors. Appl. Therm. Eng. 101 (2016) 778–795.

DOI: 10.1016/j.applthermaleng.2016.02.056

Google Scholar

[25] K. Touafek, A. Khelifa, M. Adouane, Theoretical and experimental study of sheet and tubes hybrid PVT collector. Energy Convers. Manag. 80 (2014) 71–77.

DOI: 10.1016/j.enconman.2014.01.021

Google Scholar

[26] M. Hosseinzadeh, A. Salari, M. Sardarabadi, M. Passandideh-Fard, Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Convers. Manag. 160 (2018) 93–108.

DOI: 10.1016/j.enconman.2018.02.097

Google Scholar

[27] A.Fudholi, K. Sopian, M.H. Yazdi, M.H. Ruslan, A. Ibrahim, H.A. Kazem, Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers. Manag. 78 (2014) 641–651.

DOI: 10.1016/j.enconman.2013.11.017

Google Scholar

[28] N. Aste, L. Fabrizio, D.P. Claudio, Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Sol. Energy. 112 (2015) 85–99.

DOI: 10.1016/j.solener.2014.11.025

Google Scholar

[29] A.Buonomano, C. Francesco, V. Maria, Design, simulation and experimental investigation of a solar system based on PV panels and PVT collectors. Energies. 9 (2016) 497.

DOI: 10.3390/en9070497

Google Scholar

[30] O.F. Can, N. Celik, F. Ozgen, C. Kistak, A. Taskiran, Experimental and Numerical Analysis of the Solar Collector with Stainless Steel Scourers Added to the Absorber Surface. Appl. Sci. 14 (2024) 2629.

DOI: 10.3390/app14062629

Google Scholar

[31] R. Biswas, & P.P. Tripathy, Finite element based computational analysis to study the effects of baffle and fin on the performance assessment of solar collector. Thermal Sci, and Engineering Progress. 49 (2024) 102431.

DOI: 10.1016/j.tsep.2024.102431

Google Scholar

[32] A. Al-Manea, R. Al-Rbaihat, H.T. Kadhim, A. Alahmer, T. Yusaf, & K. Egab, K. Experimental and numerical study to develop TRANSYS model for an active flat plate solar collector with an internally serpentine tube receiver. International Journal of Thermofluids. 15 (2022) 100189.

DOI: 10.1016/j.ijft.2022.100189

Google Scholar

[33] W. Quitiaquez, J. Estupiñán-Campos, C. Nieto-Londoño, & P. Quitiaquez, CFD Analysis of Heat Transfer Enhancement in a Flat-Plate Solar Collector/Evaporator with Different Geometric Variations in the Cross Section. Energies 16 (2023) 5755.

DOI: 10.3390/en16155755

Google Scholar

[34] A. Maji, T. Deshamukhya, & G. Choubey, Numerical investigation and optimisation of flat plate solar collectors using two swarm-based metaheuristic algorithms. Engineering Analysis with Boundary Elements. 156 (2023) 78-89.

DOI: 10.1016/j.enganabound.2023.08.008

Google Scholar

[35] X.F. Yu, C.P. Zhang, J.T. Teng, S.Y. Huang, S.P. Jin, et al. A study on the hydraulic and thermal characteristics in fractal tree-like microchannels by numerical and experimental methods. Int. J. Heat Mass Transf. 55 (2012) 7499–7507.

DOI: 10.1016/j.ijheatmasstransfer.2012.07.050

Google Scholar

[36] G. Wang, Y. Gu, L. Zhao, J. Xuan, G. Zeng, Z. Tang, Y. Sun, Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing. Chem. Eng. Sci. 195 (2019) 250–261.

DOI: 10.1016/j.ces.2018.07.021

Google Scholar

[37] D. Zhuang, Y. Yang, G. Ding, X. Du, Z. Hu, Optimization of Microchannel Heat Sink with Rhombus Fractal-like Units for Electronic Chip Cooling. Int. J. Refrig. 116 (2020) 108–118.

DOI: 10.1016/j.ijrefrig.2020.03.026

Google Scholar

[38] D. Jing, L. He, X. Wang, Optimization analysis of fractal tree-like microchannel network for electroviscous flow to realize minimum hydraulic resistance. Int. J. Heat Mass Transf. 125 (2018) 749–755.

DOI: 10.1016/j.ijheatmasstransfer.2018.04.115

Google Scholar

[39] A. Bejan, Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transf. 40 (1997) 799–816.

DOI: 10.1016/0017-9310(96)00175-5

Google Scholar

[40] S. Kittipong, M. Mehrdad, K. Jatuporn, S.D. Ahmet, S.A. Ho, M. Omid, W. Somchai, Novel design of a liquid-cooled heat sink for a high performance processor based on constructal theory: A numerical and experimental approach. Alex. Eng. J. 61 (2022) 10341–10358.

DOI: 10.1016/j.aej.2022.03.018

Google Scholar

[41] R. Rodríguez-Rivera, I. Carvajal-Mariscal, H. Terres-Peña, M. De la Cruz-Ávila, J.E. De León-Ruiz, Numerical Evaluation of the Flow within a Rhomboid Tessellated Pipe Network with a 3 × 3 Allometric Branch Pattern for the Inlet and Outlet. Fluids. 8 (2023) 221.

DOI: 10.3390/fluids8080221

Google Scholar

[42] ALMAZA SALGADO, R. A. F. A. E. L., & Muñoz Gutiérrez, F. (1994). Ingeniería de la energía solar (No. 697.78 A452I.).

Google Scholar

[43] E. Johansson, W.Y. Moohammed, Wind comfort and solar access in a coastal development in Malmö, Sweden. Urban Clim. 33 (2020) 100645.

DOI: 10.1016/j.uclim.2020.100645

Google Scholar

[44] T.D. Nguyen, M.B. Ha, Computational fluid dynamic model for smoke control of building basement. Case Stud. Chem. Environ. Eng. 7 (2023) 100318.

Google Scholar

[45] S. Moaveni, Finite Element Analysis Theory and Application with ANSYS, 2nd ed.; Pearson Education: Hoboken, NJ, USA, 2011; p.5–8.

Google Scholar

[46] S.V. Patankar, Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: New York, NY, USA, 1980.

Google Scholar

[47] H. Walter, Dynamic simulation of natural circulation steam generators with the use of finite-volume-algorithms—A comparison of four algorithms. Simul. Model. Pract. Theory. 15 (2007) 565–588.

DOI: 10.1016/j.simpat.2007.01.006

Google Scholar

[48] O.M. Nelson, I.J. Juan, C.C. Roberto, An approach to accelerate the convergence of SIMPLER algorithm for convection-diffusion problems of fluid flow with heat transfer and phase change. Int. Commun. Heat Mass Transf. 129 (2021) 105715.

DOI: 10.1016/j.icheatmasstransfer.2021.105715

Google Scholar

[49] R. Yin, W.K. Chow, Comparison of four algorithms for solving pressure velocity linked equations in simulating atrium fire. Int. J. Archit. Sci. 4 (2003) 24–35.

Google Scholar

[50] R.J. Schnipke, A Streamline Upwind Finite-Element Method for Laminar and Turbulent Flow; University of Virginia: Charlottesville, VA, USA, 1986.

Google Scholar