[1]
G. Colangelo, E. Favale, P. Miglietta, A. De Risi, Innovation in flat solar thermal collectors: a review of the last ten years experimental results, Renew. Sustain. Energy Rev. 57 (2016) 1141–1159.
DOI: 10.1016/j.rser.2015.12.142
Google Scholar
[2]
A. Ajbar, B. Lamrani, E. Ali, Dynamic Investigation of a Coupled Parabolic Trough Collector-Phase Change Material Tank for Solar Cooling. Energies. 16 (2023) 4235.
DOI: 10.3390/en16104235
Google Scholar
[3]
Yi He, et al. "Thermal performance and experimental analysis of stainless-steel flat plate solar collector with full-flow channels." Heliyon 10.7 (2024).
DOI: 10.1016/j.heliyon.2024.e28255
Google Scholar
[4]
F.A. Sumair, K. Mohammad, V.R. Mahesh, N. Arshid, K.R. Abdul, M.M. Nabisab, Recent progress in solar water heaters and solar collectors: A comprehensive review. Therm. Sci. Eng. Prog. 25 (2021) 100981.
Google Scholar
[5]
X. Sun, Y. Dai, V. Novakovic, J. Wu, R. Wang, Performance comparison of direct expansion solar-assisted heat pump and conventional air source heat pump for domestic hot water. Energy Procedia. 70 (2015) 394–401.
DOI: 10.1016/j.egypro.2015.02.140
Google Scholar
[6]
Y.W. Li, R.Z. Wang, J.Y. Wu, Y.X. Xu, Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater. Appl. Therm. Eng. 27 (2007) 2858–2868.
DOI: 10.1016/j.applthermaleng.2006.08.007
Google Scholar
[7]
A. Sajid, Y. Yuan, A. Hassan, J. Zhou, C. Zeng, M. Yu, B. Emmanuel, Experimental and numerical investigation on a solar direct-expansion heat pump system employing PV/T & solar thermal collector as evaporator. Energy. 254 (2022) 124312.
DOI: 10.1016/j.energy.2022.124312
Google Scholar
[8]
L.R. Jorge, C.M. Ignacio, Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi- Objective Optimization Based on the Energy Demand. Energies. 11 (2018) 1773.
DOI: 10.3390/en11071773
Google Scholar
[9]
T. Abhishek, K. Sushil, K. Pawan, K. Sanjeev, A.K. Bhardwaj, A review on the simulation/CFD based studies on the thermal augmentation of flat plate solar collectors. Mater. Today Proc. 46 (2021) 8578–8585.
DOI: 10.1016/j.matpr.2021.03.550
Google Scholar
[10]
Z. Badiei, M. Eslami, K. Jafarpur, Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling. Energy. 192 (2020) 116719.
DOI: 10.1016/j.energy.2019.116719
Google Scholar
[11]
A. Mohammad, H. Ben, H. Andrew, C. Dominic, Determining the Effect of Inlet Flow Conditions on the Thermal Efficiency of a Flat Plate Solar Collector. Fluids. 3 (2018) 67.
DOI: 10.3390/fluids3030067
Google Scholar
[12]
D.G. Gunjo, P. Mahanta, P.S. Robi, Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD análisis. Renew. Energy. 114 (2017) 655–669.
DOI: 10.1016/j.renene.2017.07.072
Google Scholar
[13]
P. Primož, T. Urban, P. Nada, V. Boris, F. Uroš, K. Andrej, Numerical and experimental investigation of the energy and exergy performance of solar thermal, photovoltaic and photovoltaic-thermal modules based on roll-bond heat exchangers. Energy Convers. Manag. 210 (2020) 112674.
DOI: 10.1016/j.enconman.2020.112674
Google Scholar
[14]
S. Kasuba, A. Suresh, K.R. Kishen, Experimental and computational analysis of radiator and evaporator. Mater. Today Proc. 2 (2015) 2277–2290.
Google Scholar
[15]
X. Sun, J. Wu, Y. Dai, R. Wang, Experimental study on roll-bond collector/evaporator with optimized channel used in direct expansion solar assisted heat pump water heating system. Appl. Therm. Eng. 66 (2014) 571–579.
DOI: 10.1016/j.applthermaleng.2014.02.060
Google Scholar
[16]
J. Yao, W. Liu, Y. Zhao, Y. Dai, J. Zhu, V. Novakovic, Two-phase flow investigation in channel design of the roll-bond cooling component for solar assisted PVT heat pump application. Energy Convers. Manag. 235 (2021) 113988.
DOI: 10.1016/j.enconman.2021.113988
Google Scholar
[17]
N. Aste, D.P. Claudio, L. Fabrizio, Water flat plate PV–thermal collectors: A review. Sol. Energy. 102 (2014) 98–115.
DOI: 10.1016/j.solener.2014.01.025
Google Scholar
[18]
A. Miglioli, N. Aste, C. Del Pero, F. Leonforte, Photovoltaic-thermal solar-assisted heat pump systems for building applications: Integration and design methods. Energy Built Environ. 4 (2023) 39–56.
DOI: 10.1016/j.enbenv.2021.07.002
Google Scholar
[19]
N. Aste, D.P. Claudio, L. Fabrizio, Thermal-electrical optimization of the configuration a liquid PVT collector. Energy Procedia. 30 (2012) 1–7.
DOI: 10.1016/j.egypro.2012.11.002
Google Scholar
[20]
A.N. Al-Shamani, K. Sopian, S. Mat, H.A. Hasan, A.M. Abed, M.H. Ruslan, Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers. Manag. 124 (2016) 528–542.
DOI: 10.1016/j.enconman.2016.07.052
Google Scholar
[21]
F. Huide, Z. Xuxin, M. Lei, Z. Tao, W. Qixing, S. Hongyuan, A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems. Energy Convers. Manag. 140 (2017) 1–13.
DOI: 10.1016/j.enconman.2017.02.059
Google Scholar
[22]
D. Del Col, A. Padovan, M. Bortolato, M. Dai Prè, E. Zambolin, Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers. Energy. 58 (2013) 258–269.
DOI: 10.1016/j.energy.2013.05.058
Google Scholar
[23]
D. Swapnil, A.O. Andrew, Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy Sustain. Dev. 17 (2013) 1–12.
DOI: 10.1016/j.esd.2012.09.001
Google Scholar
[24]
I. Guarracino, A. Mellor, N.J. Ekins-Daukes, C.N. Markides, Dynamic coupled thermal-and-electrical modelling of sheet-andtube hybrid photovoltaic/thermal (PVT) collectors. Appl. Therm. Eng. 101 (2016) 778–795.
DOI: 10.1016/j.applthermaleng.2016.02.056
Google Scholar
[25]
K. Touafek, A. Khelifa, M. Adouane, Theoretical and experimental study of sheet and tubes hybrid PVT collector. Energy Convers. Manag. 80 (2014) 71–77.
DOI: 10.1016/j.enconman.2014.01.021
Google Scholar
[26]
M. Hosseinzadeh, A. Salari, M. Sardarabadi, M. Passandideh-Fard, Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Convers. Manag. 160 (2018) 93–108.
DOI: 10.1016/j.enconman.2018.02.097
Google Scholar
[27]
A.Fudholi, K. Sopian, M.H. Yazdi, M.H. Ruslan, A. Ibrahim, H.A. Kazem, Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers. Manag. 78 (2014) 641–651.
DOI: 10.1016/j.enconman.2013.11.017
Google Scholar
[28]
N. Aste, L. Fabrizio, D.P. Claudio, Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Sol. Energy. 112 (2015) 85–99.
DOI: 10.1016/j.solener.2014.11.025
Google Scholar
[29]
A.Buonomano, C. Francesco, V. Maria, Design, simulation and experimental investigation of a solar system based on PV panels and PVT collectors. Energies. 9 (2016) 497.
DOI: 10.3390/en9070497
Google Scholar
[30]
O.F. Can, N. Celik, F. Ozgen, C. Kistak, A. Taskiran, Experimental and Numerical Analysis of the Solar Collector with Stainless Steel Scourers Added to the Absorber Surface. Appl. Sci. 14 (2024) 2629.
DOI: 10.3390/app14062629
Google Scholar
[31]
R. Biswas, & P.P. Tripathy, Finite element based computational analysis to study the effects of baffle and fin on the performance assessment of solar collector. Thermal Sci, and Engineering Progress. 49 (2024) 102431.
DOI: 10.1016/j.tsep.2024.102431
Google Scholar
[32]
A. Al-Manea, R. Al-Rbaihat, H.T. Kadhim, A. Alahmer, T. Yusaf, & K. Egab, K. Experimental and numerical study to develop TRANSYS model for an active flat plate solar collector with an internally serpentine tube receiver. International Journal of Thermofluids. 15 (2022) 100189.
DOI: 10.1016/j.ijft.2022.100189
Google Scholar
[33]
W. Quitiaquez, J. Estupiñán-Campos, C. Nieto-Londoño, & P. Quitiaquez, CFD Analysis of Heat Transfer Enhancement in a Flat-Plate Solar Collector/Evaporator with Different Geometric Variations in the Cross Section. Energies 16 (2023) 5755.
DOI: 10.3390/en16155755
Google Scholar
[34]
A. Maji, T. Deshamukhya, & G. Choubey, Numerical investigation and optimisation of flat plate solar collectors using two swarm-based metaheuristic algorithms. Engineering Analysis with Boundary Elements. 156 (2023) 78-89.
DOI: 10.1016/j.enganabound.2023.08.008
Google Scholar
[35]
X.F. Yu, C.P. Zhang, J.T. Teng, S.Y. Huang, S.P. Jin, et al. A study on the hydraulic and thermal characteristics in fractal tree-like microchannels by numerical and experimental methods. Int. J. Heat Mass Transf. 55 (2012) 7499–7507.
DOI: 10.1016/j.ijheatmasstransfer.2012.07.050
Google Scholar
[36]
G. Wang, Y. Gu, L. Zhao, J. Xuan, G. Zeng, Z. Tang, Y. Sun, Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing. Chem. Eng. Sci. 195 (2019) 250–261.
DOI: 10.1016/j.ces.2018.07.021
Google Scholar
[37]
D. Zhuang, Y. Yang, G. Ding, X. Du, Z. Hu, Optimization of Microchannel Heat Sink with Rhombus Fractal-like Units for Electronic Chip Cooling. Int. J. Refrig. 116 (2020) 108–118.
DOI: 10.1016/j.ijrefrig.2020.03.026
Google Scholar
[38]
D. Jing, L. He, X. Wang, Optimization analysis of fractal tree-like microchannel network for electroviscous flow to realize minimum hydraulic resistance. Int. J. Heat Mass Transf. 125 (2018) 749–755.
DOI: 10.1016/j.ijheatmasstransfer.2018.04.115
Google Scholar
[39]
A. Bejan, Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transf. 40 (1997) 799–816.
DOI: 10.1016/0017-9310(96)00175-5
Google Scholar
[40]
S. Kittipong, M. Mehrdad, K. Jatuporn, S.D. Ahmet, S.A. Ho, M. Omid, W. Somchai, Novel design of a liquid-cooled heat sink for a high performance processor based on constructal theory: A numerical and experimental approach. Alex. Eng. J. 61 (2022) 10341–10358.
DOI: 10.1016/j.aej.2022.03.018
Google Scholar
[41]
R. Rodríguez-Rivera, I. Carvajal-Mariscal, H. Terres-Peña, M. De la Cruz-Ávila, J.E. De León-Ruiz, Numerical Evaluation of the Flow within a Rhomboid Tessellated Pipe Network with a 3 × 3 Allometric Branch Pattern for the Inlet and Outlet. Fluids. 8 (2023) 221.
DOI: 10.3390/fluids8080221
Google Scholar
[42]
ALMAZA SALGADO, R. A. F. A. E. L., & Muñoz Gutiérrez, F. (1994). Ingeniería de la energía solar (No. 697.78 A452I.).
Google Scholar
[43]
E. Johansson, W.Y. Moohammed, Wind comfort and solar access in a coastal development in Malmö, Sweden. Urban Clim. 33 (2020) 100645.
DOI: 10.1016/j.uclim.2020.100645
Google Scholar
[44]
T.D. Nguyen, M.B. Ha, Computational fluid dynamic model for smoke control of building basement. Case Stud. Chem. Environ. Eng. 7 (2023) 100318.
Google Scholar
[45]
S. Moaveni, Finite Element Analysis Theory and Application with ANSYS, 2nd ed.; Pearson Education: Hoboken, NJ, USA, 2011; p.5–8.
Google Scholar
[46]
S.V. Patankar, Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: New York, NY, USA, 1980.
Google Scholar
[47]
H. Walter, Dynamic simulation of natural circulation steam generators with the use of finite-volume-algorithms—A comparison of four algorithms. Simul. Model. Pract. Theory. 15 (2007) 565–588.
DOI: 10.1016/j.simpat.2007.01.006
Google Scholar
[48]
O.M. Nelson, I.J. Juan, C.C. Roberto, An approach to accelerate the convergence of SIMPLER algorithm for convection-diffusion problems of fluid flow with heat transfer and phase change. Int. Commun. Heat Mass Transf. 129 (2021) 105715.
DOI: 10.1016/j.icheatmasstransfer.2021.105715
Google Scholar
[49]
R. Yin, W.K. Chow, Comparison of four algorithms for solving pressure velocity linked equations in simulating atrium fire. Int. J. Archit. Sci. 4 (2003) 24–35.
Google Scholar
[50]
R.J. Schnipke, A Streamline Upwind Finite-Element Method for Laminar and Turbulent Flow; University of Virginia: Charlottesville, VA, USA, 1986.
Google Scholar