Jump Behavior of Individual Atoms in Liquid Pb Using Molecular Dynamics Simulation

Article Preview

Abstract:

The objective of this study is to suggest a method for judging jumping periods, which means an atom moves significantly in a short time in liquid metal. In this study, molecular dynamics (MD) simulation of liquid Pb at 773 K was performed. The self-diffusion coefficient was calculated to confirm that the simulation adequately reproduces liquid Pb and was almost consistent with the reliable experimental data. In the evaluation of jumping period, atomic motion during jumping was considered. A method for estimating jumping period by using each atomic speed and 1st-peak of pair distribution function was suggested by using a time when speed is at a local minimum value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-51

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Malmejac, and G. Frohberg, Mass Transport by Diffusion, in: H.U. Walter (Eds.), Fluid Sciences and Materials Science in Space, Springer, Berlin, 1987, 159-190.

DOI: 10.1007/978-3-642-46613-7_5

Google Scholar

[2] G. Mathiak, A. Griesche, K.H. Kraatz, and G. Frohberg, Diffusion in liquid metals. J. Non-Cryst. Solids. 205-207 (1996) 412-416.

DOI: 10.1016/s0022-3093(96)00253-0

Google Scholar

[3] T. Itami, H. Aoki, M. Kaneko, M. Uchida, A. Shisa, S. Amano, O. Odawara, T. Masaki, H. Oda, T. Ooida, and S. Yoda, Diffusion of Liquid Metals and Alloys -The study of self-diffusion under microgravity in liquid Sn in the wide temperature range. J. Jpn. Soc. Microgravity Appl. 15 (1998) 225-232.

Google Scholar

[4] S. Yoda, H. Oda, T. Oida, T. Masaki, M. Kaneko, and K. Higashino, Measurement of High Accurate Diffusion coefficient in Melt of Semiconductor and Metal by using Shear Cell Method. J. Jpn. Soc. Microgravity Appl. 16 (1999) 111-118.

Google Scholar

[5] T. Itami, T. Masaki, H. Aoki, S. Munejiri, M. Uchida, S. Matsumoto, K. Kamiyama and K. Hoshino, Self-diffusion under microgravity and structure of group IVB liquids. J. Non-Cryst. Solids. 312-314 (2002) 177-181.

DOI: 10.1016/s0022-3093(02)01684-8

Google Scholar

[6] G. Mathiak, and G. Frohberg, Interdiffusion and Convection in High Magnetic Fields. Cryst. Res. Technol. 34 (1999) 181-188.

DOI: 10.1002/(sici)1521-4079(199902)34:2<181::aid-crat181>3.0.co;2-1

Google Scholar

[7] S. Suzuki, K.H. Kraatz, and G. Frohberg, Ground-Based Diffusion Experiments on Liquid Sn-In Systems Using the Shear Cell Technique of the Satellite Mission FOTON-M1. Ann. N.Y. Acad. Sci. 1027 (2004) 169-181.

DOI: 10.1196/annals.1324.016

Google Scholar

[8] S. Suzuki, K.H. Kraatz, and G. Frohberg, Diffusion Measurements on a Liquid Monotectic Alloy PbGa Using the Shear Cell Technique under µg in the Foton-M2 Mission and under 1G, Microgravity sci. technol. XVIII-3/4 (2006) 82-85.

DOI: 10.1007/bf02870385

Google Scholar

[9] M. Shiinoki, Y. Nishimura, K. Noboribayashi, and S. Suzuki, Suppressing Natural Convection for Self-diffusion Measurement in Liquid Pb Using Shear Cell Technique by Stable Density Layering of Isotopic Concentration. Metall. Mater. Trans. B. 52 (2021) 3846-3859.

DOI: 10.1007/s11663-021-02300-9

Google Scholar

[10] M. Tanaka, Structure and Properties of Liquid Metals, The Japan Institute of Metals and Materials, 1971, 112-114 (in Japanese).

Google Scholar

[11] M. Tanaka, Y. Fukui, and S. Takeuchi, Simulation of the Thermal Motion of Ions in a Liquid Metal: Analysis of Self-Diffusion and Collective Motions of Na Ions. J. Japan Inst. Metals. 37 (1973) 907-916 (in Japanese).

DOI: 10.2320/jinstmet1952.37.8_907

Google Scholar

[12] S. Munejiri, F. Shimojo, K. Hoshino, and T. Itami, Structure and self-diffusion of liquid germanium studied by a first-principles molecular-dynamics simulation. J. Non-Cryst. Solids. 312-314 (2002) 182-186.

DOI: 10.1016/s0022-3093(02)01686-1

Google Scholar

[13] S. Munejiri, T. Masaki, T. Itami, F. Shimojo, and K. Hoshino, Static and dynamic structure and the atomic dynamics of liquid Ge from first-principles molecular-dynamics simulations. Phys. Rev. B (2008) 014206.

DOI: 10.1103/physrevb.77.014206

Google Scholar

[14] M. Shiinoki, A. Hirata, and S. Suzuki, Molecular Dynamics Simulation of Diffusion Behavior in Liquid Sn and Pb. Metall. Mater. Trans. B. 55 (2024) 278-286.

DOI: 10.1007/s11663-023-02957-4

Google Scholar

[15] S. Takamoto, C. Shinagawa, D. Motoki, K. Nakago, W. Li, I. Kurata, T. Watanabe, Y. Yayama, H. Iriguchi, Y. Asano, T. Onodera, T. Ishii, T. Kudo, H. Ono, R. Sawada, R. Ishitani, M. Ong, T. Yamaguchi, T. Kataoka, A. Hayashi, N. Charoenphakdee, and T. Ibuka, Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements, Nat. Commun. 13 (2022) 2991.

DOI: 10.1038/s41467-022-30687-9

Google Scholar

[16] Matlantis (https://matlantis.com/), software as a service style material discovery tool.

Google Scholar

[17] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool, Modelling Simul. Mater. Sci. Eng. 18 (2010) 015012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar