[1]
M. S. A. Karunaratne, D. C. Cox, P. Carter, and R. C. Reed, "Modelling of the Microsegregation in CMSX-4 Superalloy and its Homogenisation During Heat Treatment," Superalloys, p.263– 272, 2000.
DOI: 10.7449/2000/superalloys_2000_263_272
Google Scholar
[2]
K. Harris, G. Erickson, S. Sikkenga, W. Brentnall, J. Aurrecoechea, and K. Kubarych, "Development of two rhenium-containing superalloys for single-crystal blade and directionally solidified vane applications in advanced turbine engines," Journal of materials engineering and performance, vol. 2, no. 4, p.481–487, 1993.
DOI: 10.1007/bf02661730
Google Scholar
[3]
P. Nath, F. Scholz, J. Pfetzing, J. Frenzel, G. Eggeler, S. Roy, and I. Sen, "Influence of microstructural homogenization on the localized deformation behavior of single-crystal Ni-based superalloy, CMSX-4," Metallurgical and Materials Transactions A, vol. 54, no. 11, p.4498– 4514, 2023.
DOI: 10.1007/s11661-023-07183-w
Google Scholar
[4]
M. L´etang, J. Schmitt, Y. J. Sohn, D. Sebold, N. Karpstein, E. Spiecker, A. Kostka, O. Guillon, and R. Vaßen, "Challenges of single-crystal cmsx-4 repair using cold spray," Surface and Coatings Technology, p.132368, 2025.
DOI: 10.1016/j.surfcoat.2025.132368
Google Scholar
[5]
J.-C. Chang, C. Choi, J.-C. Kim, and Y.-H. Yun, "Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing," Journal of materials engineering and performance, vol. 12, p.420–425, 2003.
DOI: 10.1361/105994903770342953
Google Scholar
[6]
O. Horst, B. Ruttert, D. B¨urger, L. Heep, H. Wang, A. Dlouh`y,W. Theisen, and G. Eggeler, "On the rejuvenation of crept ni-base single crystal superalloys (sx) by hot isostatic pressing (hip)," Materials Science and Engineering: A, vol. 758, p.202–214, 2019.
DOI: 10.1016/j.msea.2019.04.078
Google Scholar
[7]
L. M. Roncery, I. Lopez-Galilea, B. Ruttert, S. Huth, andW. Theisen, "Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of an SX Ni-base superalloy," Materials & Design, vol. 97, p.544–552, 2016.
DOI: 10.1016/j.matdes.2016.02.051
Google Scholar
[8]
A. Epishin, B. Camin, L. Hansen, M. Heuser, I. Lopez-Galilea, B. Ruttert, W. Theisen, and B. Fedelich, "Refinement and experimental validation of a vacancy model of pore annihilation in single-crystal nickel-base superalloys during hot isostatic pressing," Advanced Engineering Materials, vol. 23, no. 7, p.2100211, 2021.
DOI: 10.1002/adem.202100211
Google Scholar
[9]
A. Epishin, B. Bokstein, I. Svetlov, B. Fedelich, T. Feldmann, Y. Le Bouar, A. Ruffini, A. Finel, B. Viguier, and D. Poquillon, "A vacancy model of pore annihilation during hot isostatic pressing of single crystals of nickel-base superalloys," Inorganic Materials: Applied Research, vol. 9, no. 1, p.57–65, 2018.
DOI: 10.1134/s2075113318010100
Google Scholar
[10]
J. Rosolowski and C. Greskovich, "Analysis of pore shrinkage by volume diffusion during final stage sintering," Journal of Applied Physics, vol. 44, no. 4, p.1441–1450, 1973.
DOI: 10.1063/1.1662391
Google Scholar
[11]
B. S. Bokstein, A. Epishin, V. Esin, M. Mendelev, A. Rodin, and S. Zhevnenko, "Cross diffusion-stresses effects," in Defect and Diffusion Forum, vol. 264, p.79–89, Trans Tech Publ, 2007.
DOI: 10.4028/www.scientific.net/ddf.264.79
Google Scholar
[12]
A. Epishin, B. Fedelich, T. Link, T. Feldmann, and I. L. Svetlov, "Pore annihilation in a singlecrystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling," Materials Science and Engineering: A, vol. 586, p.342–349, 2013.
DOI: 10.1016/j.msea.2013.08.034
Google Scholar
[13]
A. Epishin, D. Lisovenko, and M. Alymov, "A model of diffusion annihilation of gas-filled spherical pores during hot isostatic pressing," Mechanics of Solids, vol. 60, no. 1, p.88–102, 2025.
DOI: 10.1134/s0025654424604981
Google Scholar
[14]
A. Smigelskas and E. Kirkendall, "Zinc diffusion in alpha brass," Trans. AIME, vol. 171, no. 130, 1947.
Google Scholar
[15]
H. Mehrer, Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, vol. 155. Springer Science & Business Media, 2007.
Google Scholar
[16]
A. Paul, T. Laurila, V. Vuorinen, and S. V. Divinski, Thermodynamics, diffusion and the Kirkendall effect in solids. Springer, 2014.
DOI: 10.1007/978-3-319-07461-0
Google Scholar
[17]
A. Riyahi Khorasgani, I. Steinbach, B. Camin, and J. Kundin, "A phase-field study to explore the nature of the morphological instability of kirkendall voids in complex alloys," Scientific Reports, vol. 14, no. 1, p.30489, 2024.
DOI: 10.1038/s41598-024-81532-6
Google Scholar
[18]
H. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method. New York, NY, USA: Cambridge University Press, 1st ed., 2007.
DOI: 10.1017/cbo9780511804137
Google Scholar
[19]
A. Riyahi Khorasgani, M. Younan, I. Steinbach, and J. Kundin, "Phase-field modeling of kinetics of diffusive phase transformation in compositionally-graded Ni-based superalloys," Journal of Phase Equilibria and Diffusion, vol. 45, no. 6, p.1055–1067, 2024.
DOI: 10.1007/s11669-024-01140-9
Google Scholar
[20]
J. Kundin, A. Riyahi khorasgani, R. Schiedung, B. Camin, and I. Steinbach, "Modeling vacancy-induced porosity in compositionally-graded complex alloys," Acta Materialia, vol. 271, p.119905, 2024.
DOI: 10.1016/j.actamat.2024.119905
Google Scholar
[21]
A. Chyrkin, A. Epishin, R. Pillai, T. Link, G. Nolze, and W. Quadakkers, "Modeling interdiffusion processes in CMSX-10/Ni diffusion couple," Journal of phase equilibria and diffusion, vol. 37, p.201–211, 2016.
DOI: 10.1007/s11669-015-0444-9
Google Scholar
[22]
A. I. Epishin, B. Fedelich, B. Viguier, S. Schriever, I. L. Svetlov, N. V. Petrushin, R. Saillard, A. Proietti, D. Poquillon, and A. Chyrkin, "Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150° c and 1288° c," Materials Science and Engineering: A, vol. 825, p.141880, 2021.
DOI: 10.1016/j.msea.2021.141880
Google Scholar
[23]
J.-O. Andersson and J. A˚ gren, "Models for numerical treatment of multicomponent diffusion in simple phases," Journal of applied physics, vol. 72, no. 4, p.1350–1355, 1992.
DOI: 10.1063/1.351745
Google Scholar
[24]
http://www.openphase.de.
Google Scholar
[25]
H. Strandlund and H. Larsson, "Prediction of Kirkendall shift and porosity in binary and ternary diffusion couples," Acta Materialia, vol. 52, p.4695–4703, 09 2004.
DOI: 10.1016/j.actamat.2004.06.039
Google Scholar
[26]
H. A. Soliman, J. Pineault, and M. Elbestawi, "Influence of Combined Heat Treatment and Hot Isostatic Pressure (HT-HIP) on Titanium Aluminide Processed by L-PBF," Materials, vol. 16, no. 14, 2023.
DOI: 10.3390/ma16145071
Google Scholar
[27]
X. Yang, Z. Zhao, P. Bai, W. Du, and S. Wang, "EBSD investigation on the microstructure of Ti48Al2Cr2Nb alloy hot isostatic pressing formed by Selective laser melting (SLM)," Materials Letters, vol. 309, p.131334, Feb 2022.
DOI: 10.1016/j.matlet.2021.131334
Google Scholar