[1]
ANP. Agência Nacional do Petróleo. Anuário Estatístico Brasileiro do Petróleo e do Gás Natural 2021. Rio de Janeiro: ANP, 2021. Available: <http://www.anp.gov.br>. Acesso em 30 dez. 2023.
DOI: 10.11606/t.106.2019.tde-19052020-144534
Google Scholar
[2]
ANP. Agência Nacional do Petróleo. Anuário Estatístico Brasileiro do Petróleo e do Gás Natural 2024. Rio de Janeiro: ANP, 2022. Available: <http://www.anp.gov.br>. Acesso em 13 abr. 2025.
DOI: 10.11606/t.106.2019.tde-19052020-144534
Google Scholar
[3]
F. LIN, M. XU, K.K. RAMASAMY, Z. LI, J.L. KLINGER, J.A. SCHAIDLE, H. WANG, H. Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass; Idaho National LaboratoryEnergy & Environmental Science & Technology; ACS Catalysis, 2022.
DOI: 10.1021/acscatal.2c02074
Google Scholar
[4]
M.E.L. FERREIRA, A.S.R. RIBEIRO, C.G.V. MADRIAGA, C.S. VASCONCELOS, T.T.E. SHIMABUKURO, V. ROSSA, S.S. VIEIRA, B.F. PASSOS, M.T. LIMA, Uma breve revisão sobre a catálise por átomos isolados: conceitos e aplicações. Quimica Nova. 45 (2022) 194-206
DOI: 10.21577/0100-4042.20170822
Google Scholar
[5]
IEA BIOENERGY. Biomass Pyrolysis. IEA Bioenergy Annual Report 2007. Available: <http://www.ieabioenergy.com>. Acesso em 30 dez. 2023.
Google Scholar
[6]
V. CHIES, Bio-óleo: Alternativa para extrair combustíveis líquidos e químicos renováveis do eucalipito. Agroenergia em Revista, 2015, pp.14-15.
Google Scholar
[7]
A.V. BRIDGWATER, Biomass Fast Pyrolysis. Thermal Science. 8 (2004) 21 – 49.
Google Scholar
[8]
W. CHEN, Z. LUO, C. YU, Y. YANG, G. LI, J. ZHANG, Catalytic conversion of guaiacol in ethanol for bio-oil upgrading to stable oxygenated organics. Fuel Process. Technol. 126 (2014) 420–428.
DOI: 10.1016/j.fuproc.2014.05.022
Google Scholar
[9]
G.W. HUBER, S. IBORRA, A. CORMA, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews. 106 (2006) 4044-4098.
DOI: 10.1021/cr068360d
Google Scholar
[10]
R.A. PINHO, B.B.M. ALMEIDA, L.F. MENDES, C.L. CASAVECHIA, S.M. TALMADGE, M.C. KINCHIN, L.H. CHUM, L. H. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Full Length Article. 188 (2017) 462- 473.
DOI: 10.1016/j.fuel.2016.10.032
Google Scholar
[11]
D. CASTELLO, L. ROSENDAHL, Coprocessing of pyrolysis oil in refineries. Aalborg University, Aalborg, Denmark Direct Thermochemical Liquefaction for Energy Applications. Copyright Elsevier Ltd. All rights reserved, 2018.
DOI: 10.1016/b978-0-08-101029-7.00008-4
Google Scholar
[12]
A.V. BRIDGWATER, G.V.C. PEACOCKE, Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews 4. Bio-Energy Research Group, Aston University, Birmingham, B4 7ET, UK, 2000.
DOI: 10.1016/s1364-0321(99)00007-6
Google Scholar
[13]
IEA Bioenergy. Biomass Pyrolysis. IEA Bioenergy Annual Report 2007. Available: <http://www.ieabioenergy.com>.
Google Scholar
[14]
A.V. BRIDGWATER, Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering and Applied Chemistry Department, Bio-Energy.
Google Scholar
[15]
E.T.C. VOGT, B.M. WECKHUYSEN, Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev., September, 2015.
DOI: 10.1039/c5cs00376h
Google Scholar
[16]
J. ANCHEYTA, Modelagem e simulação de reatores catalíticos para o refino de petróleo. Tradução Giane Gonçalves Lenzi, Marcelo Kaminski Lenzi. 1° ed. Rio de janeiro: LTC, 2015.
Google Scholar
[17]
R.K. GUPTA, V. KUMAR, V.K. SRIVASTAVA, A new generic approach for the modeling of fluid catalytic cracking (FCC) riser reactor. Chemical Engineering Science. Elsevier Ltd., 2007, 62, p.4510 – 4528.
DOI: 10.1016/j.ces.2007.05.009
Google Scholar
[18]
E. ABADIE, Curso de Formação de Operadores de Refinaria, Processos de Refino Apostila adaptada do material original de Elie Abadie, Equipe Petrobras (Petrobras/ Abastecimento) - Centro Universitário Positivo (UNICENP), Curitiba, 2002.
Google Scholar
[19]
R. MACEDO, Propriedades Texturais do Catalisador: Conceitos Fundamentais e Impactos. Momento técnico- Fabrica Carioca de Catalisadores. Rio de Janeiro, 2024. Available: <http://www.fccsa.com.br>).
Google Scholar
[20]
M.M.J. FERREIRA, F.E. AGUIAR-SOUSA, G.A.D. ARANDA, FCC Catalyst Accessibility—A Review. Catalysts. 13 (2023) 784.
DOI: 10.3390/catal13040784
Google Scholar
[21]
J. SCHERZER, Octane-enhancing, zeolitic FCC Catalysts: Scientific and Technical Aspects. Catalysis Reviews Science and Engineering. 31 (1989) 215-354.
DOI: 10.1080/01614948909349934
Google Scholar
[22]
S.C.T.A. SANDEN, van der, Fundamental study of spray drying fluid catalytic cracking catalyst. Technische Universiteit Eindhoven. ISBN 90-386-2575-8, 2003.
Google Scholar
[23]
A. ALVAREZ-MAJMUTOV, S. BADOGA, J. CHEN, J. MONNIER, Y. ZHANG, Co-Processing of Deoxygenated Pyrolysis Bio-Oil with Vacuum Gas Oil through Hydrocracking. Energy & Fuels, 2021.
DOI: 10.1021/acs.energyfuels.1c00822
Google Scholar
[24]
X. HAN, H. WANG, Y. ZENG, J. LIU, J. Advancing the application of bio-oils by co-processing with petroleum intermediates: A review. Energy Conversion and Management: X 10. Published by Elsevier Ltd, 2021.
DOI: 10.1016/j.ecmx.2020.100069
Google Scholar
[25]
S. BEZERGIANNIA, A. DIMITRIADISA, O. KIKHTYANINB, D. KUBICKAB, Refinery co-processing of renewable feeds. Progress in Energy and Combustion Science, Elsevier Ltd., 2018, v. 68, pp.29-64.
DOI: 10.1016/j.pecs.2018.04.002
Google Scholar
[26]
R.A. PINHO, B.B.M. ALMEIDA, L.F. MENDES, L.V. XIMENES, Production of lignocellulosic gasoline using fast pyrolysis of biomass and a conventional refining scheme. IUPAC & De Gruyter. Pure Appl. Chem. 86 (2014) 859–865.
DOI: 10.1515/pac-2013-0914
Google Scholar
[27]
M.L. GARCIA, O.H. BRAY, Fundamentals of Technology Roadmapping. Sandia Natl. Lab., 1997.
Google Scholar
[28]
S. BORSCHIVER, A.L.R. SILVA, Technology roadmap: Planejamento Estratégico para alinhar Mercado-Produto-Tecnologia. Rio de Janeiro, RJ: Editora Interciência, 2016.
Google Scholar
[29]
R. PHAAL, C.J.P. FARRUKH, D.R. PROBERT, Technology roadmapping—A planning framework for evolution and revolution. Technological Forecasting and Social Change. 71 (2004) 5–26.
DOI: 10.1016/s0040-1625(03)00072-6
Google Scholar
[30]
WRI BRASIL. Available: https://www.wribrasil.org.br/noticias/os-paises-que-mais-emitiram- gases-de-efeito-estufa.
Google Scholar
[31]
A.V. BRIDGWATER, Review of fast pyrolysis of biomass and product upgrading. Aston University Bioenergy Research Group, Aston Triangle, Birmingham B4 7ET, UK, 2012.
DOI: 10.6026/97320630013220
Google Scholar
[32]
DK2852657T3 Fremgangsmåder til vedvarende brændstof, 2019 ENSY ENEWABLES INC [US] EMPRESA Dinamarca.
Google Scholar
[33]
US2018195006A.
Google Scholar