Technology Roadmap: Trends in the Use of Bio-Oil in Catalytic Refining Processes

Article Preview

Abstract:

The need to decarbonize the energy matrix has pushed different sectors to seek alternative energy generation methods. Among these, biofuels stand out. This study proposes to analyze the trend of coprocessing renewables (bio-oil) in refineries using a prioritization technique called Roadmap. This methodology allowed for the creation of short-term trend maps based on an analysis of approved patents. Additional short-term maps were developed from patent applications. Finally, a third long-term map considered information extracted from articles, patents, and patent applications available on various platforms (Scopus, Science Direct, among others) during the study period. The study spanned an 11-year timeframe. The Roadmap methodology involves temporal evaluation, which helps identify associations between different institutions (companies, universities, or research centers). A taxonomy derived from reading all the material was used for analysis, allowing for an assessment of the state-of-the-art in terms of the types or developments of catalysts employed and the types of processing. The results indicate that hydrotreating and hydrocracking are promising routes, despite higher costs, mainly due to the use of hydrogen and high operating pressures. However, these are effective short-term alternatives for refineries without a Fluid Catalytic Cracking (FCC) structure. Fluid Catalytic Cracking (FCC) demonstrates the highest maturity, flexibility, and development potential, making it economically viable for bio-oil coprocessing. FCC catalysts containing zeolites in their formulation, which are extensively tested and evaluated for coprocessing, represent the most promising options, even when facing unfavorable results caused by their deactivation. It was concluded that hydrodeoxygenation (HDO) technology as a pretreatment for bio-oil obtained from fast pyrolysis biomass conversion could be the solution to reduce coke generation and prevent the rapid deactivation of zeolite-based catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-95

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ANP. Agência Nacional do Petróleo. Anuário Estatístico Brasileiro do Petróleo e do Gás Natural 2021. Rio de Janeiro: ANP, 2021. Available: <http://www.anp.gov.br>. Acesso em 30 dez. 2023.

DOI: 10.11606/t.106.2019.tde-19052020-144534

Google Scholar

[2] ANP. Agência Nacional do Petróleo. Anuário Estatístico Brasileiro do Petróleo e do Gás Natural 2024. Rio de Janeiro: ANP, 2022. Available: <http://www.anp.gov.br>. Acesso em 13 abr. 2025.

DOI: 10.11606/t.106.2019.tde-19052020-144534

Google Scholar

[3] F. LIN, M. XU, K.K. RAMASAMY, Z. LI, J.L. KLINGER, J.A. SCHAIDLE, H. WANG, H. Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass; Idaho National LaboratoryEnergy & Environmental Science & Technology; ACS Catalysis, 2022.

DOI: 10.1021/acscatal.2c02074

Google Scholar

[4] M.E.L. FERREIRA, A.S.R. RIBEIRO, C.G.V. MADRIAGA, C.S. VASCONCELOS, T.T.E. SHIMABUKURO, V. ROSSA, S.S. VIEIRA, B.F. PASSOS, M.T. LIMA, Uma breve revisão sobre a catálise por átomos isolados: conceitos e aplicações. Quimica Nova. 45 (2022) 194-206

DOI: 10.21577/0100-4042.20170822

Google Scholar

[5] IEA BIOENERGY. Biomass Pyrolysis. IEA Bioenergy Annual Report 2007. Available: <http://www.ieabioenergy.com>. Acesso em 30 dez. 2023.

Google Scholar

[6] V. CHIES, Bio-óleo: Alternativa para extrair combustíveis líquidos e químicos renováveis do eucalipito. Agroenergia em Revista, 2015, pp.14-15.

Google Scholar

[7] A.V. BRIDGWATER, Biomass Fast Pyrolysis. Thermal Science. 8 (2004) 21 – 49.

Google Scholar

[8] W. CHEN, Z. LUO, C. YU, Y. YANG, G. LI, J. ZHANG, Catalytic conversion of guaiacol in ethanol for bio-oil upgrading to stable oxygenated organics. Fuel Process. Technol. 126 (2014) 420–428.

DOI: 10.1016/j.fuproc.2014.05.022

Google Scholar

[9] G.W. HUBER, S. IBORRA, A. CORMA, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews. 106 (2006) 4044-4098.

DOI: 10.1021/cr068360d

Google Scholar

[10] R.A. PINHO, B.B.M. ALMEIDA, L.F. MENDES, C.L. CASAVECHIA, S.M. TALMADGE, M.C. KINCHIN, L.H. CHUM, L. H. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Full Length Article. 188 (2017) 462- 473.

DOI: 10.1016/j.fuel.2016.10.032

Google Scholar

[11] D. CASTELLO, L. ROSENDAHL, Coprocessing of pyrolysis oil in refineries. Aalborg University, Aalborg, Denmark Direct Thermochemical Liquefaction for Energy Applications. Copyright Elsevier Ltd. All rights reserved, 2018.

DOI: 10.1016/b978-0-08-101029-7.00008-4

Google Scholar

[12] A.V. BRIDGWATER, G.V.C. PEACOCKE, Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews 4. Bio-Energy Research Group, Aston University, Birmingham, B4 7ET, UK, 2000.

DOI: 10.1016/s1364-0321(99)00007-6

Google Scholar

[13] IEA Bioenergy. Biomass Pyrolysis. IEA Bioenergy Annual Report 2007. Available: <http://www.ieabioenergy.com>.

Google Scholar

[14] A.V. BRIDGWATER, Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering and Applied Chemistry Department, Bio-Energy.

Google Scholar

[15] E.T.C. VOGT, B.M. WECKHUYSEN, Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev., September, 2015.

DOI: 10.1039/c5cs00376h

Google Scholar

[16] J. ANCHEYTA, Modelagem e simulação de reatores catalíticos para o refino de petróleo. Tradução Giane Gonçalves Lenzi, Marcelo Kaminski Lenzi. 1° ed. Rio de janeiro: LTC, 2015.

Google Scholar

[17] R.K. GUPTA, V. KUMAR, V.K. SRIVASTAVA, A new generic approach for the modeling of fluid catalytic cracking (FCC) riser reactor. Chemical Engineering Science. Elsevier Ltd., 2007, 62, p.4510 – 4528.

DOI: 10.1016/j.ces.2007.05.009

Google Scholar

[18] E. ABADIE, Curso de Formação de Operadores de Refinaria, Processos de Refino Apostila adaptada do material original de Elie Abadie, Equipe Petrobras (Petrobras/ Abastecimento) - Centro Universitário Positivo (UNICENP), Curitiba, 2002.

Google Scholar

[19] R. MACEDO, Propriedades Texturais do Catalisador: Conceitos Fundamentais e Impactos. Momento técnico- Fabrica Carioca de Catalisadores. Rio de Janeiro, 2024. Available: <http://www.fccsa.com.br>).

Google Scholar

[20] M.M.J. FERREIRA, F.E. AGUIAR-SOUSA, G.A.D. ARANDA, FCC Catalyst Accessibility—A Review. Catalysts. 13 (2023) 784.

DOI: 10.3390/catal13040784

Google Scholar

[21] J. SCHERZER, Octane-enhancing, zeolitic FCC Catalysts: Scientific and Technical Aspects. Catalysis Reviews Science and Engineering. 31 (1989) 215-354.

DOI: 10.1080/01614948909349934

Google Scholar

[22] S.C.T.A. SANDEN, van der, Fundamental study of spray drying fluid catalytic cracking catalyst. Technische Universiteit Eindhoven. ISBN 90-386-2575-8, 2003.

Google Scholar

[23] A. ALVAREZ-MAJMUTOV, S. BADOGA, J. CHEN, J. MONNIER, Y. ZHANG, Co-Processing of Deoxygenated Pyrolysis Bio-Oil with Vacuum Gas Oil through Hydrocracking. Energy & Fuels, 2021.

DOI: 10.1021/acs.energyfuels.1c00822

Google Scholar

[24] X. HAN, H. WANG, Y. ZENG, J. LIU, J. Advancing the application of bio-oils by co-processing with petroleum intermediates: A review. Energy Conversion and Management: X 10. Published by Elsevier Ltd, 2021.

DOI: 10.1016/j.ecmx.2020.100069

Google Scholar

[25] S. BEZERGIANNIA, A. DIMITRIADISA, O. KIKHTYANINB, D. KUBICKAB, Refinery co-processing of renewable feeds. Progress in Energy and Combustion Science, Elsevier Ltd., 2018, v. 68, pp.29-64.

DOI: 10.1016/j.pecs.2018.04.002

Google Scholar

[26] R.A. PINHO, B.B.M. ALMEIDA, L.F. MENDES, L.V. XIMENES, Production of lignocellulosic gasoline using fast pyrolysis of biomass and a conventional refining scheme. IUPAC & De Gruyter. Pure Appl. Chem. 86 (2014) 859–865.

DOI: 10.1515/pac-2013-0914

Google Scholar

[27] M.L. GARCIA, O.H. BRAY, Fundamentals of Technology Roadmapping. Sandia Natl. Lab., 1997.

Google Scholar

[28] S. BORSCHIVER, A.L.R. SILVA, Technology roadmap: Planejamento Estratégico para alinhar Mercado-Produto-Tecnologia. Rio de Janeiro, RJ: Editora Interciência, 2016.

Google Scholar

[29] R. PHAAL, C.J.P. FARRUKH, D.R. PROBERT, Technology roadmapping—A planning framework for evolution and revolution. Technological Forecasting and Social Change. 71 (2004) 5–26.

DOI: 10.1016/s0040-1625(03)00072-6

Google Scholar

[30] WRI BRASIL. Available: https://www.wribrasil.org.br/noticias/os-paises-que-mais-emitiram- gases-de-efeito-estufa.

Google Scholar

[31] A.V. BRIDGWATER, Review of fast pyrolysis of biomass and product upgrading. Aston University Bioenergy Research Group, Aston Triangle, Birmingham B4 7ET, UK, 2012.

DOI: 10.6026/97320630013220

Google Scholar

[32] DK2852657T3 Fremgangsmåder til vedvarende brændstof, 2019 ENSY ENEWABLES INC [US] EMPRESA Dinamarca.

Google Scholar

[33] US2018195006A.

Google Scholar