Linking Rheology to Morphology in Lava Flows: A Theoretical Framework for Power-Law and Prefractal Scaling

Article Preview

Abstract:

Volcanism is a fundamental planetary process, and understanding the dynamics of lava flows is critical for both hazard mitigation and geological studies. The final length and morphology of a lava flow are governed by a complex interplay between effusion rate, total volume, topography, and the lava's evolving thermo-rheological properties. While empirical power laws relating flow length to effusion rate or volume have proven useful, they do not fully capture the physical processes driving flow behavior, particularly the effects of crust formation and fragmentation. This paper presents an integrated theoretical framework that links macroscopic flow dynamics with the microscale processes of fragmentation. We begin by deriving scaling laws for flow length and width based on a Herschel-Bulkley fluid model. We then introduce a novel component to this framework by postulating that key rheological parameters evolve as a function of the flow's developing prefractal dimension, which quantifies its fragmentation and complexity. Finally, we propose a modified power law for the final flow length that accounts for energy dissipation due to both viscous shearing and the creation of new prefractal surfaces. By analyzing observational data from various basaltic to rhyolitic lava flows, we calibrate and discuss the model's empirical coefficients. The results demonstrate that highly fragmented lava flows like 'a'ā have their runout distance significantly reduced by the energetic cost of their increasing complexity, consistent with field observations. This framework provides a more physically robust foundation for forecasting lava flow behavior and interpreting their final morphologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-65

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Sigurdsson (Ed.), The Encyclopedia of Volcanoes (Academic Press, 2017).

Google Scholar

[2] R. J. Blong, Building safety in volcano country. In Volcanic Degassing (Geological Society, London, 2003).

Google Scholar

[3] A. J. L. Harris, Lava flows. In P. D. Fagents, T. K. P. Gregg, R. M. C. Lopes (Eds.), Modeling Volcanic Processes: The Physics and Mathematics of Volcanism (Cambridge University Press, 2013).

DOI: 10.1017/cbo9781139021562

Google Scholar

[4] J. Birnbaum, W. Zia, A. Bordbar, R. F. Lee, C. M. Boyce, E. Lev, Journal of Geophysical Research: Solid Earth, 128 (2023) e2023JB026464.

Google Scholar

[5] D. B. Dingwell, N. S. Bagdassarov, S. L. Webb, Magma rheology. In Short Course Handbook on Experiments at High Pressure and Applications to the Earth's Mantle vol. 21 (Mineralogical Association of Canada, 1993).

Google Scholar

[6] H. Pinkerton, R. S. J. Sparks, Nature. 276 (1978) 383–385.

Google Scholar

[7] G. P. L. Walker, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 274 (1973) 107–118.

Google Scholar

[8] A. F. Miguel. Defect and Diffusion Forum. 439 (2025) 73-82.

Google Scholar

[9] B. Soni, A. F. Miguel, A. K. Nayak, Proceedings of the Royal Society A 476 (2020) 20200377.

Google Scholar

[10] A. F. Miguel, International Journal of Heat and Mass Transfer. 131 (2019) 64–71.

Google Scholar

[11] A. F. Miguel, Physica A. 512 (2018) 665-674.

Google Scholar

[12] A. F. Miguel, Physics of Life Reviews. 10 (2013) 168–190.

Google Scholar

[13] C. R. J. Kilburn, R. M. C. Lopes, Journal of Geophysical Research: Solid Earth. 96 (1991) 19721–19732.

Google Scholar

[14] M. C. Malin, Geology. 8 (1980) 306–308.

Google Scholar

[15] A. J. L. Harris, S. K. Rowland, Bulletin of Volcanology. 63 (2001) 20–44.

Google Scholar

[16] M. R. James, H. Pinkerton, M. Ball, S. Calvari, Remote Sensing. 12 (2020) 3777.

Google Scholar

[17] G. Ganci, A. Cappello, G. Bilotta, C. del Negro, A. Vicari, Geoscience and Remote Sensing Letters. 19 (2022) 1–5.

Google Scholar

[18] L. Beccaro, N. Ganci, A. Cappello, C. del Negro, M. Neri, Frontiers in Earth Science. 11 (2023) 1211450.

Google Scholar

[19] R. P. Chhabra, J. F. Richardson, Non-Newtonian Fluid Flow: An Introduction. (Butterworth-Heinemann, 2008).

Google Scholar

[20] H. E. Huppert, Journal of Fluid Mechanics. 121 (1982) 43-58.

Google Scholar

[21] J. E. Simpson, Gravity Currents in the Environment and the Laboratory (Cambridge University Press, 1997).

Google Scholar

[22] H. E. Huppert, Journal of Fluid Mechanics. 121 (1982) 43-58.

Google Scholar

[23] G. Hulme, Geophysical Journal International. 39 (1974) 361-383.

Google Scholar

[24] R. W. Griffiths, Annual Review of Fluid Mechanics. 32 (2000) 477-518.

Google Scholar

[25] A. J. L. Harris, M. Favalli, F. Mazzarini, C. W. Hamilton, Bulletin of Volcanology. 71 (2009) 459-474.

Google Scholar

[26] A. F. Miguel, Symmetry. 17 (2025) 1502.

Google Scholar

[27] B. C. Bruno, G. J. Taylor, S. K. Rowland, P. G. Lucey, S. Self, Geophysical Research Letters. 19 (1992) 305–308.

DOI: 10.1029/91gl03039

Google Scholar

[28] L. J. Lipkaman, T. K. P. Gregg, A'ā versus pāhoehoe on Mars, Venus, and Earth: What do fractal dimensions actually reveal? Lunar and Planetary Science Conference XXXIV (2003) 1389.

Google Scholar

[29] E. I. Schaefer, C. W. Hamilton, C. D. Neish, M. M. Sori, A. M., Bramson, S. P. Beard, Journal of Geophysical Research: Solid Earth. 126 (2021) e2020JB020949.

DOI: 10.1029/2020jb020949

Google Scholar

[30] E. M. Recchuiti, V. Haag, A. Soldati, Fractal Dimensions of Lava Flow Margins on Earth and Venus as Flow Morphology Indicators. 55th Lunar and Planetary Science Conference. (2024) 1115.

Google Scholar

[31] B. C. Bruno, G. J. Taylor, S. K. Rowland, S. M. Baloga, Bulletin of Volcanology. 56 (1994) 193–206.

Google Scholar

[32] D. W. Peterson, Geological Society of America Bulletin. 83 (1972) 2655-2665.

Google Scholar

[33] S. K. Rowland, G. P. L. Walker, Bulletin of Volcanology. 52 (1990) 3-10.

Google Scholar

[34] V. Haag, W. M. Moreland, D. R. Bohnenstiehl, I. Jónsdóttir, A. Soldati, Bulletin of Volcanology. 87 (2025) 50.

Google Scholar

[35] M. O. Chevrel, A. J.L. Harris, M. R. James, L. Calabrò, L. Gurioli, H. Pinkerton, Earth and Planetary Science Letters. 384 (2013) 107-116.

Google Scholar

[36] A. Piombo, M. Dragoni, Geophysical Research Letters. 36 (2009) L22306.

Google Scholar

[37] M. Filippucci, A. Tallarico, M. Dragoni, Bollettino di Geofisica Teorica ed Applicata. 51 (2010) 683–697.

Google Scholar

[38] C. Cigolini, A. Borgia, L. Casertano, Journal of Volcanology and Geothermal Research. 20 (1984) 115-133.

Google Scholar

[39] A. J. L. Harris, J. B. Murray, S. E. Aries, M. A. Davies, L. P. Flynn, M. J. Wooster, R. Wright, D. A. Rothery, Geological Society of London. 283 (2007) 221-240.

Google Scholar

[40] H. Pinkerton, L. Wilson, Bulletin of Volcanology. 56 (1994) 108–120.

Google Scholar

[41] J. H. Fink, R. W. Griffiths, Journal of Geophysical Research: Solid Earth. 103 (1998) 527-545.

Google Scholar

[42] A. J. L. Harris, S. K. Rowland, Bulletin of Volcanology. 63 (2001) 12–23.

Google Scholar

[43] O. Melnik, R. S. J. Sparks, Nature. 402 (1999) 37-41.

Google Scholar

[44] D. Pieri,S. Baloga, Journal of Volcanology and Geothermal Research. 30 (1986) 29-45.

Google Scholar

[45] T. K. P. Gregg, J. H. Fink, Journal of Volcanology and Geothermal Research. 96 (2000) 263-280.

Google Scholar