[1]
S. Gimondi, H. Ferreira, R.L. Reis, N.M. Neves, Microfluidic devices: a tool for nanoparticle synthesis and performance evaluation. ACS Nano. 17 (2023) 14205–14228.
DOI: 10.1021/acsnano.3c01117
Google Scholar
[2]
C. Qi, T. Zhou, X. Wu, K. Liu, L. Li, Z. Liu, et al., Micro-nano-fabrication of green functional materials by multiphase microfluidics for environmental and energy applications. Green Energy Environ. (2023).
DOI: 10.1016/j.gee.2023.05.012
Google Scholar
[3]
Y. Zhang, Y. Song, Z. Weng, J. Yang, L. Avery, K.D. Dieckhaus, et al., A point- of-care microfluidic biosensing system for rapid and ultrasensitive nucleic acid detection from clinical samples. Lab Chip. 23 (2023) 3862–3873.
DOI: 10.1039/d3lc00372h
Google Scholar
[6]
K. I. Sotowa et al. "Droplet formation by the collision of two aqueous solutions in a microchannel and application to particle synthesis". Chem. Eng. Technol. 30 (2007) 383–388.
DOI: 10.1002/ceat.200600345
Google Scholar
[7]
B. Ahmed, D. Barrow, and T. Wirth. "Enhancement of reaction rates by segmented fluid flow in capillary scale reactors". Adv. Synth. Catal. 348 (2006) 1043–1048.
DOI: 10.1002/adsc.200505480
Google Scholar
[8]
Zhun Lin et al. "Application of microfluidic technologies on COVID-19 diagnosis and drug discovery". Acta Pharmaceutica Sinica B. 13.7 (2023) 2877–2896.
DOI: 10.1016/j.apsb.2023.02.014
Google Scholar
[9]
M. A. Northrup et al. "DNA amplification with a microfabricated reaction chamber". In: Transducers '93: Digest of Technical Papers, Proceedings of the 7th International Conference on Solid-State Sensors and Actuators. Yokohama, Japan, 1993.
Google Scholar
[10]
S. Wiedemeier et al. "Parametric studies on droplet generation reproducibility for applications with biological relevant fluids". Engineering in Life Sciences 17.12 (2017) 1271–1280.
DOI: 10.1002/elsc.201700086
Google Scholar
[11]
A. Lashkaripour, C. Rodriguez, N. Mehdipour, et al. "Machine learning enables design automation of microfluidic flow-focusing droplet generation". Nature Communications. 12 (2021) 25.
DOI: 10.1038/s41467-020-20284-z
Google Scholar
[14]
P. Zhu, L. Wang, Passive and active droplet generation with microfluidics: a review. Lab on a Chip. 17 (2017) 34–75.
DOI: 10.1039/c6lc01018k
Google Scholar
[15]
B. Rostami, G.L. Morini, Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross-junction. International Journal of Multiphase Flow. 105 (2018) 202–216.
DOI: 10.1016/j.ijmultiphaseflow.2018.03.024
Google Scholar
[16]
F. Azzini, B. Pulvirenti, M. Rossi, G.L. Morini, Squeezing Droplet Formation in a Flow-Focusing Micro Cross-Junction. Micromachines. 15 (2024) 339.
DOI: 10.3390/mi15030339
Google Scholar