Competition between Formation and Decomposition of Solid Solution during High Pressure Torsion: A Review

Article Preview

Abstract:

During high-pressure torsion (HPT), the sample positioned between the plungers of the experimental setup is resistant to fracturing, allowing the HPT process to be sustained almost indefinitely. Despite this, relaxation processes taking place within the sample during HPT lead swiftly to the establishment of a steady state. Factors such as hardness, grain size, the scale of second-phase precipitates, electrical conductivity, lattice spacing, among others, rapidly reach a saturation point, albeit after varying revolutions of the plunger. For instance, in the scenario of HPT involving a binary solid solution accompanied by secondary phase particles that act as sources of dissolved atoms, a dynamic equilibrium and competition emerge between the formation and decomposition of a supersaturated solid solution. Consequently, a specific equilibrium state is achieved with a designated concentration (css) of the second component within the solid solution. This equilibrium state is independent of the initial one (referred to as equifinality). The steady-state concentration css can be identified on the solubility limit line (solvus) of the second component in the phase diagram at an effective temperature Teff. In copper alloys, the value of Teff grows as the activation enthalpy for the volume diffusion of the second component increases. This amplification signifies a rise in defect concentration and an activation-driven character of mass transfer during HPT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-25

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Edalati, Z. Horita, Mater. Sci. Eng. A. 652 (2016) 325.

Google Scholar

[2] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Mater. Sci. Eng. A. 168 (1993) 141.

Google Scholar

[3] K. Kaneko, T. Hata, T. Tokunaga, Z. Horita, Mater. Trans. 50 (2009) 76.

Google Scholar

[4] X. Sauvage, A. Chbihi, X. Quelennec, J. Phys. Conf. Ser. 240 (2010) 012003.

DOI: 10.1088/1742-6596/240/1/012003

Google Scholar

[5] B.B. Straumal, A.A. Mazilkin, B. Baretzky, E. Rabkin, R.Z. Valiev, Mater.Trans. 53 (2012) 63.

Google Scholar

[6] B. Straumal, A. Korneva, P. Zięba, Arch. Civil Mech. Eng. 14 (2014) 242.

Google Scholar

[7] A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, B. Baretzky, Mater. Trans. 60 (2019) 1489.

DOI: 10.2320/matertrans.mf201938

Google Scholar

[8] I.K. Razumov, Yu.N. Gornostyrev, A.E. Ermakov, Phys. Met. Metallogr. 119 (2018) 1133.

Google Scholar

[9] Y. Ashkenazy, N. Pant, J. Zhou, P. Bellon, R.S. Averback, Acta Mater. 139 (2017) 205.

Google Scholar

[10] S. Tulić, M. Kerber, M. Matsuda, T. Waitz, Func. Mater. Lett. 10 (2017) 1740012.

Google Scholar

[11] Y. Fukushima, Y. Ikoma, K. Edalati, B. Chon, D.J. Smith, Z. Horita, Mater. Charact. 129 (2017) 163.

Google Scholar

[12] N. Resnina, S. Belyaev, V. Zeldovich, V. Pilyugin, N. Frolova, D. Glazova, Thermochim. Acta 627 (2016) 20.

DOI: 10.1016/j.tca.2016.01.015

Google Scholar

[13] V.G. Pushin, N.I. Kourov, N.N. Kuranova, A. V. Pushin, A.N. Uksusnikov, Phys. Met. Metallogr. 115 (2014) 365.

DOI: 10.1134/s0031918x14040127

Google Scholar

[14] V.G. Pushin, N.N. Kuranova, N.I. Kourov, R.Z. Valiev, A.V. Korolev, V.V. Makarov, A.V. Pushin, A.N. Uksusnikov, Phys. Met. Metallogr. 114 (2013) 488.

DOI: 10.1134/s0031918x13060124

Google Scholar

[15] E.I. Teitel', L.S. Metlov, D.V. Gunderov, A.V. Korznikov, Phys. Met. Metallogr. 113 (2012) 1162.

Google Scholar

[16] T. Miyazaki, D. Terada, Y. Miyajima, C. Suryanarayana, R. Murao, Y. Yokoyama, K. Sugiyama, M. Umemoto, Y. Todaka, N. Tsuji, J. Mater. Sci. 46 (2011) 4296.

DOI: 10.1007/s10853-010-5240-7

Google Scholar

[17] B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, R.Z. Valiev, Acta Mater. 52 (2004) 4469.

DOI: 10.1016/j.actamat.2004.06.006

Google Scholar

[18] B.B. Straumal, S.G. Protasova, A.A. Mazilkin, E. Rabkin, D. Goll, G. Schütz, B. Baretzky, R.Z. Valiev, J. Mater. Sci. 47 (2012) 360.

DOI: 10.1007/s10853-011-5805-0

Google Scholar

[19] B.B. Straumal, A.R. Kilmametov, Y. Ivanisenko, L. Kurmanaeva, B. Baretzky, Y.O. Kucheev, P. Zięba, A. Korneva, D.A. Molodov, Mater. Lett. 118 (2014) 111.

DOI: 10.1016/j.matlet.2013.12.042

Google Scholar

[20] B.B. Straumal, A.R. Kilmametov, I.A. Mazilkin, A. Korneva, P. Zieba, B. Baretzky, JETP Letters 110 (2019) 624.

DOI: 10.1134/s0021364019210112

Google Scholar

[21] A.A. Mazilkin, B.B. Straumal, A.R. Kilmametov, T. Boll, B. Baretzky, O.A. Kogtenkova, A. Korneva, P. Zięba, Scripta Mater. 173 (2019) 46.

DOI: 10.1016/j.scriptamat.2019.08.001

Google Scholar

[22] H. Azzeddine, B. Mehdi, L. Hennet, D Thiaudière, B Alili, M Kawasaki, D Bradai, TG Langdon, Mater. Sci. & Eng. A 597 (2014) 288.

DOI: 10.1016/j.msea.2013.12.092

Google Scholar

[23] Y.B. Wang, X.Z. Liao, Y.H. Zhao, J.C. Cooley, Z. Horita, Y.T. Zhu, Appl. Phys. Lett. 102 (2013) 231912.

Google Scholar

[24] A. Bachmaier, G.B. Rathmayr, M. Bartosik, D. Apel, Z. Zhang, R. Pippan, Acta Mater. 69 (2014) 301.

Google Scholar

[25] A. Bachmaier, J. Keckes, K.S. Kormout, R. Pippan, Phil. Mag. Lett. 94 (2014) 9.

Google Scholar

[26] Y.F. Sun, H. Fujii, T. Nakamura, N. Tsuji, D. Todaka, M. Umemoto, Scr. Mater. 65 (2011) 489.

Google Scholar

[27] I.V. Shchetinin, I.G. Bordyuzhin, R.V. Sundeev, V.P. Menushenkov, A.V. Kamynin, V.N. Verbetsky, A.G. Savchenko, Mater. Lett. 274 (2020) 127993.

DOI: 10.1016/j.matlet.2020.127993

Google Scholar

[28] S.D. Prokoshkin, I.Yu. Khmelevskaya, S.V. Dobatkin, I.B. Trubitsyna, E.V. Tatyanin, V.V. Stolyarov, E.A. Prokofiev, Acta Mater. 53 (2005) 2703.

DOI: 10.1016/j.actamat.2005.02.032

Google Scholar

[29] X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D.H. Ping, K. Hono, Acta. Mater. 49 (2001) 389.

DOI: 10.1016/s1359-6454(00)00338-4

Google Scholar

[30] A.A. Mazilkin, G.E. Abrosimova, S.G. Protasova, B.B. Straumal, G. Schütz, S.V. Dobatkin, A.S. Bakai, J. Mater. Sci. 46 (2011) 4336.

DOI: 10.1007/s10853-011-5304-3

Google Scholar

[31] B.B. Straumal, A. Korneva, O. Kogtenkova, L. Kurmanaeva, P. Zięba, A. Wierzbicka-Miernik, S.N. Zhevnenko, B. Baretzky, J. Alloys Comp. 615 (2014) S183.

DOI: 10.1016/j.jallcom.2014.01.156

Google Scholar

[32] B.B. Straumal, A.A. Mazilkin, S.G. Protasova, D.V. Gunderov, G.A. López, B. Baretzky, Mater. Lett. 161 (2015) 735.

DOI: 10.1016/j.matlet.2015.09.076

Google Scholar

[33] A. Aronin, G. Abrosimova, Metals. 10 (2020) 358.

Google Scholar

[34] F. Staab, P. Niels, E. Bruder, T. Smoliarova, D. Koch, X. Chen, K. Skokov, B. Gault, M. Farle, O. Gutfleisch, K. Durst, J. Alloys Compd. 1010 (2025) 177858.

DOI: 10.1016/j.jallcom.2024.177858

Google Scholar

[35] V.R. Galakhov, B.A. Gizhevskii, S.V. Naumov, J. Phys. Chem. Sol. 193 (2024) 112165.

Google Scholar

[36] H. Shahmir, M. Hosseinzadeh, H.S. Kim, M. Nili-Ahmadabadi, Intermetallics. 168 (2024) 108264.

DOI: 10.1016/j.intermet.2024.108264

Google Scholar

[37] F. Staab, Y. Yang, E. Foya, E. Bruder, B. Zingsem, E. Adabifiroozjaei, D. Nasiou, K. Skokov, D. Koch, M. Farle, R.E. Dunin-Borkowski, L. Molina-Luna, O. Gutfleisch, B.-X. Xu, K. Durst, Scripta Mater. 240 (2024) 115808.

DOI: 10.1016/j.scriptamat.2023.115808

Google Scholar

[38] M. Stückler, S. Wurster, M. Alfreider, M. Zawodzki, H. Krenn, A. Bachmaier, Nanomater. 13 (2023) 2280.

DOI: 10.3390/nano13162280

Google Scholar

[39] J. Zhang, S. Wang, H. Ding, P. Hu, Y. Huang, Y. Zhang, Crystals. 13 (2023) 1246.

Google Scholar

[40] Y. Ren, A. Shuitcev, D.V. Gunderov, L. Li, R.Z. Valiev, Y.X. Tong, Mater. Lett. 322 (2022) 132484.

Google Scholar

[41] R.V. Sundeev, A.V. Shalimova, A.V. Krivoruchko, A.M. Glezer, A.A. Veligzhanin, V.A. Khonik, Intermetallics. 141 (2022) 107372.

DOI: 10.1016/j.intermet.2021.107372

Google Scholar

[42] V.S. Kalashnikov, V.A. Andreev, V.V. Koledov, A.V. Petrov, V.G. Shavrov, D.V. Kuchin, R.M. Gizatullin, Metal Sci. Heat Treat. 63 (2021) 258.

DOI: 10.1007/s11041-021-00680-y

Google Scholar

[43] A.M. Glezer, M.R. Plotnikova, A.V. Shalimova, S.V. Dobatkin, Bull. Russ. Ac. Sci. Phys. 73 (2009) 1233.

Google Scholar

[44] S. Hóbor, Á. Révész, A.P. Zhilyaev, Zs. Kovács, Rev. Adv. Mater. Sci. 18 (2008) 590.

Google Scholar

[45] G. Abrosimova, O. Aksenov, N. Volkov, D.V. Matveev, E. Pershina, A.S. Aronin, Metals. 14 (2024) 771.

DOI: 10.3390/met14070771

Google Scholar

[46] G.E. Abrosimova, V.V. Astanin, N.A. Volkov, D.V. Gunderov, E.Y. Postnova, A.S. Aronin, Phys. Met. Metallogr. 124 (2023) 698.

DOI: 10.1134/s0031918x23600859

Google Scholar

[47] G. Abrosimova, D. Gunderov, E. Postnova, A. Aronin, Materials. 16 (2023) 1321.

Google Scholar

[48] B. Mironchuk, G. Abrosimova, S. Bozhko, E. Pershina, A. Aronin, J. Non-Cryst. Solids. 577 (2022) 121279.

DOI: 10.1016/j.jnoncrysol.2021.121279

Google Scholar

[49] G. Abrosimova, B. Gnesin, D. Gunderov, A. Drozdenko, D. Matveev, B. Mironchuk, E. Pershina, I. Sholin, A. Aronin, Metals. 10 (2020) 1329.

DOI: 10.3390/met10101329

Google Scholar

[50] B. Mironchuk, G. Abrosimova, S. Bozhko, A. Drozdenko, E. Postnova, A. Aronin, Mater. Lett. 273 (2020) 127941.

DOI: 10.1016/j.matlet.2020.127941

Google Scholar

[51] G. Abrosimova, A. Aronin, J. Alloys Compd. 747 (2018) 26.

Google Scholar

[52] G. Abrosimova, D. Matveev, E. Pershina, A. Aronin, Mater. Lett. 183 (2016) 131.

Google Scholar

[53] E.A. Pershina, G.E. Abrosimova, A.S. Aronin, D. V. Matveev, Phys. Sol. State. 57 (2015) 234.

Google Scholar

[54] E.A. Pershina, G.E. Abrosimova, A.S. Aronin, D. Matveev, V. Tkatch, Mater. Lett. 134 (2014) 60.

Google Scholar

[55] Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.-J. Fecht, Acta Mater. 54 (2006) 1659.

DOI: 10.1016/j.actamat.2005.11.034

Google Scholar

[56] M.T. Pérez-Prado, A.P. Zhilyaev, Phys. Rev. Lett. 102 (2009) 175504.

Google Scholar

[57] K. Edalati, E. Matsubara, Z. Horita, Metal. Mater. Trans. A 40 (2009) 2079.

Google Scholar

[58] Y. Ivanisenko, A. Kilmametov, H. Roesner, R.Z. Valiev, Int. J. Mater. Res. 99 (2008) 36.

Google Scholar

[59] B.B. Straumal, A.R. Kilmametov, A.A. Mazilkin, A. S. Gornakova, O. B. Fabrichnaya, M. J. Kriegel, D. Rafaja, M.F. Bulatov, A.N. Nekrasov, B. Baretzky, JETP Letters. 111 (2020) 568.

DOI: 10.1134/s0021364020100033

Google Scholar

[60] A. Kilmametov, Yu. Ivanisenko, B.B. Straumal, A.A. Mazilkin, A.S. Gornakova, M.J. Kriegel, O.B. Fabrichnaya, D. Rafaja, H. Hahn, Scripta Mater. 136 (2017) 46.

DOI: 10.1016/j.scriptamat.2017.04.010

Google Scholar

[61] A.S. Gornakova, S.I. Prokofiev, B.B. Straumal, K.I. Kolesnikova, Russ. J. Non-Ferr. Met. 57 (2016) 703.

Google Scholar

[62] B.B. Straumal, A.S. Gornakova, A.A. Mazilkin, O.B. Fabrichnaya, M.J. Kriegel, B. Baretzky, J.-Z. Jiang, S.V. Dobatkin, Mater. Lett. 81 (2012) 225.

DOI: 10.1016/j.matlet.2012.04.153

Google Scholar

[63] Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q. Guo, Z. Horita, Appl. Phys. Lett. 101 (2024) 121908.

Google Scholar

[64] Y. Ikoma, K. Yoshida, M. Kohno, Sol. State Commun. 397 (2024) 115804.

Google Scholar

[65] Y. Ikoma, Mater. Trans. 64 (2023) 1346.

Google Scholar

[66] Y. Ikoma, T. Yamasaki, T. Masuda, Y. Tange, Y. Higo, Y. Ohishi, M.R. McCartney, D.J. Smith, Z. Horita, Phil. Mag. Lett. 101 (2021) 223.

DOI: 10.1080/09500839.2021.1905192

Google Scholar

[67] S. Yesudhas, V.I. Levitas, F. Lin, K.K. Pandey, J.S. Smith, Nature Commun. 15 (2024) 7054.

Google Scholar

[68] B. Popescu, C. Gurau, G. Gurau, M. Tolea, M. Sofronie, F. Tolea, Trans. Indian Inst. Met. 74 (2021) 2491.

DOI: 10.1007/s12666-021-02293-8

Google Scholar

[69] V.G. Pushin, N.N. Kuranova, E.B. Marchenkova, A.V. Pushin, Phys. Metals Metallogr. 121 (2020) 330.

DOI: 10.1134/s0031918x20040122

Google Scholar

[70] B.B. Straumal, A.R. Kilmametov, Yu. Ivanisenko, A.A. Mazilkin, R.Z. Valiev, N.S. Afonikova, A.S. Gornakova, H. Hahn, J. Alloys Comp. 735 (2018) 2281.

DOI: 10.1016/j.jallcom.2017.11.317

Google Scholar

[71] J. Zhang, S. Wang, P. Hu, Y. Zhang, H. Ding, Y. Huang, Metals. 14 (2024) 184.

Google Scholar

[72] M. Kerber, T. Waitz, M. Matsuda, J. Alloys Compd. 935 (2023) 168037.

Google Scholar

[73] R.Z. Valiev, B. Straumal, T.G. Langdon, Ann. Rev. Mater. Res. 52 (2022), 357.

Google Scholar

[74] B.B. Straumal, A.R. Kilmametov, A. Korneva, A.A. Mazilkin, P.B. Straumal, P. Zięba, B. Baretzky, J. Alloys Compd. 707 (2017) 20.

DOI: 10.1016/j.jallcom.2016.12.057

Google Scholar

[75] B.B. Straumal, S.G. Protasova, A.A. Mazilkin, E. Rabkin, D. Goll, G. Schütz, B. Baretzky, R.Z. Valiev, J. Mater. Sci. 47 (2012) 360.

DOI: 10.1007/s10853-011-5805-0

Google Scholar

[76] B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.R. Kilmametov, A.V. Druzhinin, B. Baretzky, JETP Letters. 112 (2020) 37.

DOI: 10.1134/s0021364020130020

Google Scholar

[77] B.B. Straumal, A.R. Kilmametov, P.B. Straumal, A.A. Mazilkin, J. Mater. Sci. 59 (2024) 5818.

DOI: 10.1007/s10853-023-09328-z

Google Scholar

[78] B.B. Straumal, A.R. Kilmametov, B. Baretzky, O.A. Kogtenkova, P.B. Straumal, L. Lityńska-Dobrzyńska, R. Chulist, A. Korneva, P. Zięba, Acta Mater. 195 (2020) 184.

DOI: 10.1016/j.actamat.2020.05.055

Google Scholar

[79] H. Mehrer (Ed.), Diffusion in Solid Metals and Alloys, Landolt-Börnstein New Series, Gr III, Vol. 26, Springer-Verlag, Berlin, 1990.

Google Scholar

[80] A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, B. Baretzky, Mater. Trans. 60 (2019) 1489

DOI: 10.2320/matertrans.mf201938

Google Scholar

[81] B.B. Straumal, O.A. Kogtenkova, A.S. Gornakova, M.A. Khorosheva, A. Kilmametov, M. Kulak, D. Bradai, Lett. Mater. 15 (2025) 147.

Google Scholar

[82] B.B. Straumal, O.A. Kogtenkova, A.S. Gornakova, M.A. Khorosheva, P.B. Straumal, P.A. Prokofiev, D. Bradai, A.R. Kilmametov, JETP Letters. 121 (2025) 619.

DOI: 10.1134/s0021364025605822

Google Scholar