[1]
T. Rieger, J.-M. Joubert, R. Poulain, X. Sauvage, E. Paccou, L. Perriere, I. Guillot, G. Dirras, G. Laplanche, M. Laurent-Brocq, J.-P. Couzinie, Influence of chemical composition on coarsening kinetics of coherent L12 precipitates in FCC complex concentrated alloys, J. Alloys and Compounds, 967 (2023), 171711.
DOI: 10.1016/j.jallcom.2023.171711
Google Scholar
[2]
N. Galvani, M. Pasquet, A. Mukherjee, A. Requier, S. Cohen-Addad, O. Pitois, R. Hohler, E. Rioc, A. Salonenc, D. J. Duriane, Langevin, D. Hierarchical bubble size distributions in coarsening wet liquid foams, PNAS 120 (2023), e2306551120.
DOI: 10.1073/pnas.2306551120
Google Scholar
[3]
J.C. Li, K.G. Wang, Influence of phase coarsening on fatigue crack growth in precipitate strengthened alloys, Engineering Fracture Mechanics, 205 (2019), 229-252.
DOI: 10.1016/j.engfracmech.2018.11.029
Google Scholar
[4]
I.M. Lifshitz, V.V. Slyozov, The Kinetics of Precipitation from Supersaturated Solid Solution, J. Phys. Chem. Solids, 19 (1961), 35-50.
DOI: 10.1016/0022-3697(61)90054-3
Google Scholar
[5]
C. Wagner, Theorie der Alterung von Niederschlagen durch Umlosen, Z. Elektrochem, 65 (1961), 581-591.
Google Scholar
[6]
M. Hillert, On the Theory of normal and Abnormal grain growth, Acta Metall., 13 (1965), 227-238.
DOI: 10.1016/0001-6160(65)90200-2
Google Scholar
[7]
V.E. Fradkov, U. Udler, Two-dimensional grain growth: topological aspects, Adv. Phys., 43 (1994), 739-789.
DOI: 10.1080/00018739400101559
Google Scholar
[8]
C.E. Krill III, L.-Q. Chen, Computer Simulation of 3D grain growth using a phase-field model, Acta Mater., 50 (2002), 3057-3073.
Google Scholar
[9]
K.G. Wang, X. Ding, K. Chang, L.Q. Chen, Phase-field simulation of phase coarsening at ultrahigh volume fractions, Journal of Applied Physics, 107 (2010), 061801.
DOI: 10.1063/1.3340517
Google Scholar
[10]
H. Yan, K.G. Wang, J.E. Jones, Large-scale three-dimensional phase-field simulations on high-performance architectures, Modelling Simul. Mater. Sci. Eng., 24 (2016), 055016.
DOI: 10.1088/0965-0393/24/5/055016
Google Scholar
[11]
B. Pletcher, K.G. Wang, M.E. Glicksman, Experimental, computational, and theoretical studies of δ' phase coarsening in Al-Li alloys, Acta Mater., 60 (2012), 5803-5817.
DOI: 10.1016/j.actamat.2012.07.021
Google Scholar
[12]
J. D. Thompson, E. B. Gulsoy, P. W. Voorhees, Self-similar coarsening: A test of theory, Acta Mater., 100 (2015), 282-289.
DOI: 10.1016/j.actamat.2015.08.036
Google Scholar
[13]
K.G. Wang, M.E. Glicksman, C. Lou, Correlations and fluctuations in phase coarsening, Phys. Rev. E, 73 (2006), 061502.
Google Scholar
[14]
S.K. Kailasam, M.E. Glicksman, S.S. Mani, V.E. Fradkov, Investigation of microstructural coarsening in Sn-Pb alloys, Metall. Mat. Trans. A, 30 (1999),1541–1547.
DOI: 10.1007/s11661-999-0091-z
Google Scholar
[15]
K.G. Wang, Analytical and numerical modeling of phase coarsening in dense binary systems, Acta Mater., 260 (2023), 117402.
Google Scholar
[16]
P. Streitenberger, Analytical description of phase coarsening at high volume fractions, Acta Mater., 61 (2013), 5026–5035.
DOI: 10.1016/j.actamat.2013.04.042
Google Scholar