Testing Theories and Simulations on Phase Coarsening by Experiments

Article Preview

Abstract:

The recent progress in theoretical, experimental, and computational studies of phase coarsening is briefly reported in this paper. The study of phase coarsening in materials processing is important to ensuring future improvements in a variety of industrial materials applications. The first successful theoretical description of diffusion-controlled phase coarsening in three-dimensional systems was proposed by Lifshitz and Slyozov in 1961, and independently, a theory for interface-reaction-controlled phase coarsening was developed by Wagner in 1961. In order to consider the effects of non-zero volume fraction on phase coarsening, recently, the author developed diffusion screening theory for the kinetics of phase coarsening. In the case of ultra-high volume fractions, the author’s diffusion layer theory was published in 2023. There are several advanced experimental methods developed to investigate and quantify the late-stage phase coarsening, including microgravity experiment on Space Shuttle and the International Space Station (ISS). Recently, phase field simulations for the study of phase coarsening have been performed for systems with different volume fractions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

January 2026

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Rieger, J.-M. Joubert, R. Poulain, X. Sauvage, E. Paccou, L. Perriere, I. Guillot, G. Dirras, G. Laplanche, M. Laurent-Brocq, J.-P. Couzinie, Influence of chemical composition on coarsening kinetics of coherent L12 precipitates in FCC complex concentrated alloys, J. Alloys and Compounds, 967 (2023), 171711.

DOI: 10.1016/j.jallcom.2023.171711

Google Scholar

[2] N. Galvani, M. Pasquet, A. Mukherjee, A. Requier, S. Cohen-Addad, O. Pitois, R. Hohler, E. Rioc, A. Salonenc, D. J. Duriane, Langevin, D. Hierarchical bubble size distributions in coarsening wet liquid foams, PNAS 120 (2023), e2306551120.

DOI: 10.1073/pnas.2306551120

Google Scholar

[3] J.C. Li, K.G. Wang, Influence of phase coarsening on fatigue crack growth in precipitate strengthened alloys, Engineering Fracture Mechanics, 205 (2019), 229-252.

DOI: 10.1016/j.engfracmech.2018.11.029

Google Scholar

[4] I.M. Lifshitz, V.V. Slyozov, The Kinetics of Precipitation from Supersaturated Solid Solution, J. Phys. Chem. Solids, 19 (1961), 35-50.

DOI: 10.1016/0022-3697(61)90054-3

Google Scholar

[5] C. Wagner, Theorie der Alterung von Niederschlagen durch Umlosen, Z. Elektrochem, 65 (1961), 581-591.

Google Scholar

[6] M. Hillert, On the Theory of normal and Abnormal grain growth, Acta Metall., 13 (1965), 227-238.

DOI: 10.1016/0001-6160(65)90200-2

Google Scholar

[7] V.E. Fradkov, U. Udler, Two-dimensional grain growth: topological aspects, Adv. Phys., 43 (1994), 739-789.

DOI: 10.1080/00018739400101559

Google Scholar

[8] C.E. Krill III, L.-Q. Chen, Computer Simulation of 3D grain growth using a phase-field model, Acta Mater., 50 (2002), 3057-3073.

Google Scholar

[9] K.G. Wang, X. Ding, K. Chang, L.Q. Chen, Phase-field simulation of phase coarsening at ultrahigh volume fractions, Journal of Applied Physics, 107 (2010), 061801.

DOI: 10.1063/1.3340517

Google Scholar

[10] H. Yan, K.G. Wang, J.E. Jones, Large-scale three-dimensional phase-field simulations on high-performance architectures, Modelling Simul. Mater. Sci. Eng., 24 (2016), 055016.

DOI: 10.1088/0965-0393/24/5/055016

Google Scholar

[11] B. Pletcher, K.G. Wang, M.E. Glicksman, Experimental, computational, and theoretical studies of δ' phase coarsening in Al-Li alloys, Acta Mater., 60 (2012), 5803-5817.

DOI: 10.1016/j.actamat.2012.07.021

Google Scholar

[12] J. D. Thompson, E. B. Gulsoy, P. W. Voorhees, Self-similar coarsening: A test of theory, Acta Mater., 100 (2015), 282-289.

DOI: 10.1016/j.actamat.2015.08.036

Google Scholar

[13] K.G. Wang, M.E. Glicksman, C. Lou, Correlations and fluctuations in phase coarsening, Phys. Rev. E, 73 (2006), 061502.

Google Scholar

[14] S.K. Kailasam, M.E. Glicksman, S.S. Mani, V.E. Fradkov, Investigation of microstructural coarsening in Sn-Pb alloys, Metall. Mat. Trans. A, 30 (1999),1541–1547.

DOI: 10.1007/s11661-999-0091-z

Google Scholar

[15] K.G. Wang, Analytical and numerical modeling of phase coarsening in dense binary systems, Acta Mater., 260 (2023), 117402.

Google Scholar

[16] P. Streitenberger, Analytical description of phase coarsening at high volume fractions, Acta Mater., 61 (2013), 5026–5035.

DOI: 10.1016/j.actamat.2013.04.042

Google Scholar