[1]
LongQing Chen and AG Khachaturyan. Computer simulation of structural transformations du ring precipitation of an ordered intermetallic phase. Acta metallurgica et materialia, 39(11) :2533 2551, (1991).
DOI: 10.1016/0956-7151(91)90069-d
Google Scholar
[2]
Armen G Khachaturyan. Theory of structural transformations in solids. Courier Corporation, 2013.[3] Y Wang, LQ Chen, and AG Khachaturyan. Kinetics of straininduced morphological transfor mation in cubic alloys with a miscibility gap. Acta Metallurgica et Materialia, 41(1) :279296, (1993).
DOI: 10.1016/0956-7151(93)90359-z
Google Scholar
[4]
R Poduri and LQ Chen. Computer simulation of atomic ordering and compositional clustering in the pseudobinary ni 3 alni 3 v system. Acta materialia, 46(5) :17191729, (1998).
DOI: 10.1016/s1359-6454(97)00335-2
Google Scholar
[5]
LQ Chen and AG Khachaturyan. Dynamics of simultaneous ordering and phase separation and effect of longrange coulomb interactions. Physical review letters, 70(10) :1477, (1993).
DOI: 10.1103/physrevlett.70.1477
Google Scholar
[6]
Yongmei M Jin and Armen G Khachaturyan. Atomic density function theory and modeling of microstructure evolution at the atomic scale. Journal of applied physics, 100(1) :013519, (2006).
DOI: 10.1063/1.2213353
Google Scholar
[7]
Mykola Lavrskyi, Helena Zapolsky, and Armen G Khachaturyan. Quasiparticle approach to dif fusional atomic scale selfassembly of complex structures : from disorder to complex crystals and doublehelix polymers. npj Computational Materials, 2 :15013, (2016).
DOI: 10.1038/npjcompumats.2015.13
Google Scholar
[8]
LongQing Chen. Phasefield models for microstructure evolution. Annual review of materials research, 32(1) :113140, (2002).
Google Scholar
[9]
Y Wang, D Banerjee, CC Su, and AG Khachaturyan. Field kinetic model and computer simulation of precipitation of l1 2 ordered intermetallics from fcc solid solution. Acta materialia, 46(9) :2983 3001, (1998).
DOI: 10.1016/s1359-6454(98)00015-9
Google Scholar
[10]
Yong Ma and Alan J Ardell. Coarsening of γ (nial solid solution) precipitates in a γ' (ni 3 al) matrix. Acta materialia, 55(13) :44194427, (2007).
DOI: 10.1016/j.actamat.2007.04.008
Google Scholar
[11]
Heinrich Pottebohm, Günter Neite, and Eckhard Nembach. Elastic properties (the stiffness constants, the shear modulus and the dislocation line energy and tension) of ni al solid solutions and of the nimonic alloy pe16. Materials Science and Engineering, 60(3) :189194, (1983).
DOI: 10.1016/0025-5416(83)90001-0
Google Scholar
[12]
LQ Chen and Jie Shen. Applications of semiimplicit fourierspectral method to phase field equations. Computer Physics Communications, 108(2) :147158, (1998).
Google Scholar
[13]
IV Vernyhora, HM Zapolsky, R Patte, and D Ledue. Atomic density function modeling of micro structure evolution in ni 3 x fe x alloys. Journal of Magnetism and Magnetic Materials, 351 :52 59, (2014).
DOI: 10.1016/j.jmmm.2013.09.043
Google Scholar
[14]
Helena Zapolsky, Sebastien Ferry, Xavier Sauvage, Didier Blavette, and LongQing Chen. Kine tics of cubictotetragonal transformation in nivx alloys. Philosophical Magazine, 90(14) :337 355, (2010).
DOI: 10.1080/14786430903179562
Google Scholar
[15]
J Boisse, H Zapolsky, and AG Khachaturyan. Atomicscale modeling of nanostructure for mation in fega alloys with giant magnetostriction : Cascade ordering and decomposition. Acta Materialia, 59(7) :26562668, (2011).
DOI: 10.1016/j.actamat.2011.01.002
Google Scholar
[16]
R Poduri and LQ Chen. Computer simulation of morphological evolution and coarsening kine tics of δ' (al 3 li) precipitates in alli alloys. Acta materialia, 46(11) :39153928, (1998).
DOI: 10.1016/s1359-6454(98)00058-5
Google Scholar
[17]
R. Enrique and P. Bellon. Compositional patterning in systems driven by competing dynamics of different length scale. Phys. Rev. Lett., 84(13) :28858, March (2000).
DOI: 10.1103/physrevlett.84.2885
Google Scholar
[18]
M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65 :8511112, Jul (1993).
Google Scholar
[19]
H. Bernas, J.Ph. Attané, K.H. Heinig, D. Halley, D. Ravelosona, A. Marty, P. Auric, C. Chap pert, and Y. Samson. Ordering intermetallic alloys by ion irradiation : A way to tailor magnetic media. Phys. Rev. Lett., 91 :077203, Aug (2003).
DOI: 10.1103/physrevlett.91.077203
Google Scholar
[20]
Y. Cheng. Mater. Sci. Rep., 45, (1990).
Google Scholar
[21]
P. Tolédano and V. Dmitriev. Reconstructive phase transitions : in crystals and quasicrystals. World Scientific, 1996.[22] G. Martin. Atomic mobility in Cahn's diffusion model. Phys. Rev. B, 41(4) :22792283, (1990).
DOI: 10.1142/2848
Google Scholar
[23]
A. R. Allnatt and A. B. Lidiard. Atomic transport in solids. Cambridge University Press, (2003).
Google Scholar
[24]
D. B. Butrymowicz, J. R. Manning, and M. E. Read. Diffusion in copper and copper alloys part iv. diffusion in systems involving elements of group viii. J. Phys. Chem. Ref. Data, (1), (1976).
DOI: 10.1063/1.555528
Google Scholar
[25]
G Demange, L Lunéville, V Pontikis, and D Simeone. Prediction of irradiation induced micro structures using a multiscale method coupling atomistic and phase field modeling : Application to the agcu model alloy. Journal of Applied Physics, 121(12) :125108, (2017).
DOI: 10.1063/1.4978964
Google Scholar
[26]
J. L. Murray. Calculations of Stable and Metastable Equilibrium Diagrams of the AgCu and CdZn Systems. l(February) :261268, (1984).
Google Scholar
[27]
G. Martin. Phase stability under irradiation : Ballistic effects. Phys. Rev. B, 30(3) :53, August (1984).
Google Scholar
[28]
D. Simeone, L. Lunéville, and G. Baldinozzi. Cascade fragmentation under ion beam irradiation : A fractal approach. Phys. Rev. E, 82, July (2010).
DOI: 10.1103/physreve.82.011122
Google Scholar
[29]
P. Sigmund and A. GrasMarti. Theoretical aspects of atomic mixing by ion beams. Nucl. Instrum. Methods, 182-183, Part 1(0), (1981).
Google Scholar
[30]
E. Antoshchenkova, L. Luneville, D. Simeone, R.E. Stoller, and M. Hayoun. Fragmentation of displacement cascades into subcascades : A molecular dynamics study. J. Nucl. Mater., 458 :168 175, (2015).
DOI: 10.1016/j.jnucmat.2014.12.025
Google Scholar
[31]
R. A. Enrique, K. Nordlund, R. S. Averback, and P. Bellon. Simulations of dynamical stabiliza tion of Ag-Cu nanocomposites by ionbeam processing. J. Appl. Phys., 93(5) :2917, (2003).
DOI: 10.1063/1.1540743
Google Scholar
[32]
R. Sizmann. The effect of radiation upon diffusion in metals. J. Nucl. Mater., 69 :386412, (1978).
Google Scholar
[33]
G. Demange. Mise en œuvre d'une approche multiéchelles fondée sur le champ de phase pour caractériser la microstructure des matériaux irradiés : application à l'alliage AgCu. PhD thesis, École Centrale de Paris, (2015).
Google Scholar
[34]
A. Barbu and G. Martin. Materials under irradiation.
Google Scholar
[35]
M. T. Robinson and I. M. Torrens. Computer simulation of atomicdisplacement cascades in solids in the binary collision approximation. Phys. Rev. B, 9(12), (1974).
DOI: 10.1103/physrevb.9.5008
Google Scholar
[36]
M. T. Robinson. The binary collision approximation : background and introduction. Procee dings of the International Conference on Computer Simulations of Radiation Effects in Solids, 141, August (1992).
Google Scholar
[37]
G. Demange, E. Antoshchenkova, M. Hayoun, L. Lunéville, and D. Simeone. Simulating the ballistic effects of ion irradiation in the binary collision approximation : A first step toward the ion mixing framework. J. Nucl. Mat., 486 :26 33, (2017).
DOI: 10.1016/j.jnucmat.2017.01.012
Google Scholar
[38]
L. C. Wei and R. S. Averback. Phase evolution during ionbeam mixing of Ag-Cu. J. Appl. Phys., 81(2) :613, (1997).
Google Scholar
[39]
I. M. Lifshitz. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids, 19(12) :3550, April (1961).
Google Scholar