From the Atomistic to the Mesoscopic Scale Modeling of Phase Transition in Solids

Article Preview

Abstract:

The phase-field method is a very powerful tool to model the phase transformation and microstructural evolution of solids at mesoscopic scale. However, several important phenomena, like defect formation, grain boundary motion, or reconstructive phase transitions require an atomic scale study. Recently an approach called the quasi-particle approach, based on the Atomic Density Function theory was developed to incorporate the atomic-level crystalline structures into standard continuum theory for pure and multicomponent systems. This review focuses on the description of different computational methods used to model microstructural evolution and self-assembly phenomena at mesoscopic and atomistic scales. Various application examples of these methods are also presented.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 12)

Pages:

111-126

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Long­Qing Chen and AG Khachaturyan. Computer simulation of structural transformations du­ ring precipitation of an ordered intermetallic phase. Acta metallurgica et materialia, 39(11) :2533­ 2551, (1991).

DOI: 10.1016/0956-7151(91)90069-d

Google Scholar

[2] Armen G Khachaturyan. Theory of structural transformations in solids. Courier Corporation, 2013.[3] Y Wang, L­Q Chen, and AG Khachaturyan. Kinetics of strain­induced morphological transfor­ mation in cubic alloys with a miscibility gap. Acta Metallurgica et Materialia, 41(1) :279­296, (1993).

DOI: 10.1016/0956-7151(93)90359-z

Google Scholar

[4] R Poduri and L­Q Chen. Computer simulation of atomic ordering and compositional clustering in the pseudobinary ni 3 al­ni 3 v system. Acta materialia, 46(5) :1719­1729, (1998).

DOI: 10.1016/s1359-6454(97)00335-2

Google Scholar

[5] LQ Chen and AG Khachaturyan. Dynamics of simultaneous ordering and phase separation and effect of long­range coulomb interactions. Physical review letters, 70(10) :1477, (1993).

DOI: 10.1103/physrevlett.70.1477

Google Scholar

[6] Yongmei M Jin and Armen G Khachaturyan. Atomic density function theory and modeling of microstructure evolution at the atomic scale. Journal of applied physics, 100(1) :013519, (2006).

DOI: 10.1063/1.2213353

Google Scholar

[7] Mykola Lavrskyi, Helena Zapolsky, and Armen G Khachaturyan. Quasiparticle approach to dif­ fusional atomic scale self­assembly of complex structures : from disorder to complex crystals and double­helix polymers. npj Computational Materials, 2 :15013, (2016).

DOI: 10.1038/npjcompumats.2015.13

Google Scholar

[8] Long­Qing Chen. Phase­field models for microstructure evolution. Annual review of materials research, 32(1) :113­140, (2002).

Google Scholar

[9] Y Wang, D Banerjee, CC Su, and AG Khachaturyan. Field kinetic model and computer simulation of precipitation of l1 2 ordered intermetallics from fcc solid solution. Acta materialia, 46(9) :2983­ 3001, (1998).

DOI: 10.1016/s1359-6454(98)00015-9

Google Scholar

[10] Yong Ma and Alan J Ardell. Coarsening of γ (ni­al solid solution) precipitates in a γ' (ni 3 al) matrix. Acta materialia, 55(13) :4419­4427, (2007).

DOI: 10.1016/j.actamat.2007.04.008

Google Scholar

[11] Heinrich Pottebohm, Günter Neite, and Eckhard Nembach. Elastic properties (the stiffness constants, the shear modulus and the dislocation line energy and tension) of ni al solid solutions and of the nimonic alloy pe16. Materials Science and Engineering, 60(3) :189­194, (1983).

DOI: 10.1016/0025-5416(83)90001-0

Google Scholar

[12] LQ Chen and Jie Shen. Applications of semi­implicit fourier­spectral method to phase field equations. Computer Physics Communications, 108(2) :147­158, (1998).

Google Scholar

[13] IV Vernyhora, HM Zapolsky, R Patte, and D Ledue. Atomic density function modeling of micro­ structure evolution in ni 3­ x fe x alloys. Journal of Magnetism and Magnetic Materials, 351 :52­ 59, (2014).

DOI: 10.1016/j.jmmm.2013.09.043

Google Scholar

[14] Helena Zapolsky, Sebastien Ferry, Xavier Sauvage, Didier Blavette, and Long­Qing Chen. Kine­ tics of cubic­to­tetragonal transformation in ni­v­x alloys. Philosophical Magazine, 90(1­4) :337­ 355, (2010).

DOI: 10.1080/14786430903179562

Google Scholar

[15] J Boisse, H Zapolsky, and AG Khachaturyan. Atomic­scale modeling of nanostructure for­ mation in fe­ga alloys with giant magnetostriction : Cascade ordering and decomposition. Acta Materialia, 59(7) :2656­2668, (2011).

DOI: 10.1016/j.actamat.2011.01.002

Google Scholar

[16] R Poduri and L­Q Chen. Computer simulation of morphological evolution and coarsening kine­ tics of δ' (al 3 li) precipitates in al­li alloys. Acta materialia, 46(11) :3915­3928, (1998).

DOI: 10.1016/s1359-6454(98)00058-5

Google Scholar

[17] R. Enrique and P. Bellon. Compositional patterning in systems driven by competing dynamics of different length scale. Phys. Rev. Lett., 84(13) :2885­8, March (2000).

DOI: 10.1103/physrevlett.84.2885

Google Scholar

[18] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65 :851­1112, Jul (1993).

Google Scholar

[19] H. Bernas, J.­Ph. Attané, K.­H. Heinig, D. Halley, D. Ravelosona, A. Marty, P. Auric, C. Chap­ pert, and Y. Samson. Ordering intermetallic alloys by ion irradiation : A way to tailor magnetic media. Phys. Rev. Lett., 91 :077203, Aug (2003).

DOI: 10.1103/physrevlett.91.077203

Google Scholar

[20] Y. Cheng. Mater. Sci. Rep., 45, (1990).

Google Scholar

[21] P. Tolédano and V. Dmitriev. Reconstructive phase transitions : in crystals and quasicrystals. World Scientific, 1996.[22] G. Martin. Atomic mobility in Cahn's diffusion model. Phys. Rev. B, 41(4) :2279­2283, (1990).

DOI: 10.1142/2848

Google Scholar

[23] A. R. Allnatt and A. B. Lidiard. Atomic transport in solids. Cambridge University Press, (2003).

Google Scholar

[24] D. B. Butrymowicz, J. R. Manning, and M. E. Read. Diffusion in copper and copper alloys part iv. diffusion in systems involving elements of group viii. J. Phys. Chem. Ref. Data, (1), (1976).

DOI: 10.1063/1.555528

Google Scholar

[25] G Demange, L Lunéville, V Pontikis, and D Simeone. Prediction of irradiation induced micro­ structures using a multiscale method coupling atomistic and phase field modeling : Application to the agcu model alloy. Journal of Applied Physics, 121(12) :125108, (2017).

DOI: 10.1063/1.4978964

Google Scholar

[26] J. L. Murray. Calculations of Stable and Metastable Equilibrium Diagrams of the Ag­Cu and Cd­Zn Systems. l(February) :261­268, (1984).

Google Scholar

[27] G. Martin. Phase stability under irradiation : Ballistic effects. Phys. Rev. B, 30(3) :53, August (1984).

Google Scholar

[28] D. Simeone, L. Lunéville, and G. Baldinozzi. Cascade fragmentation under ion beam irradiation : A fractal approach. Phys. Rev. E, 82, July (2010).

DOI: 10.1103/physreve.82.011122

Google Scholar

[29] P. Sigmund and A. Gras­Marti. Theoretical aspects of atomic mixing by ion beams. Nucl. Instrum. Methods, 182-183, Part 1(0), (1981).

Google Scholar

[30] E. Antoshchenkova, L. Luneville, D. Simeone, R.E. Stoller, and M. Hayoun. Fragmentation of displacement cascades into subcascades : A molecular dynamics study. J. Nucl. Mater., 458 :168 ­ 175, (2015).

DOI: 10.1016/j.jnucmat.2014.12.025

Google Scholar

[31] R. A. Enrique, K. Nordlund, R. S. Averback, and P. Bellon. Simulations of dynamical stabiliza­ tion of Ag-Cu nanocomposites by ion­beam processing. J. Appl. Phys., 93(5) :2917, (2003).

DOI: 10.1063/1.1540743

Google Scholar

[32] R. Sizmann. The effect of radiation upon diffusion in metals. J. Nucl. Mater., 69 :386­412, (1978).

Google Scholar

[33] G. Demange. Mise en œuvre d'une approche multi­échelles fondée sur le champ de phase pour caractériser la microstructure des matériaux irradiés : application à l'alliage AgCu. PhD thesis, École Centrale de Paris, (2015).

Google Scholar

[34] A. Barbu and G. Martin. Materials under irradiation.

Google Scholar

[35] M. T. Robinson and I. M. Torrens. Computer simulation of atomic­displacement cascades in solids in the binary collision approximation. Phys. Rev. B, 9(12), (1974).

DOI: 10.1103/physrevb.9.5008

Google Scholar

[36] M. T. Robinson. The binary collision approximation : background and introduction. Procee­ dings of the International Conference on Computer Simulations of Radiation Effects in Solids, 141, August (1992).

Google Scholar

[37] G. Demange, E. Antoshchenkova, M. Hayoun, L. Lunéville, and D. Simeone. Simulating the ballistic effects of ion irradiation in the binary collision approximation : A first step toward the ion mixing framework. J. Nucl. Mat., 486 :26 ­ 33, (2017).

DOI: 10.1016/j.jnucmat.2017.01.012

Google Scholar

[38] L. C. Wei and R. S. Averback. Phase evolution during ion­beam mixing of Ag-Cu. J. Appl. Phys., 81(2) :613, (1997).

Google Scholar

[39] I. M. Lifshitz. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids, 19(1­2) :35­50, April (1961).

Google Scholar