Ab Initio Based Modelling of Diffusion and Phase Stability of Alloys

Article Preview

Abstract:

In this chapter, we present the basic principles and methods for modelling of diffusion and phase stability of alloys using ab-initio methods. We review briefly first-principles methods and their most important approximations. The direct and approximated methods of prediction of migration energies are shown both for pure metals and for alloys. The cluster expansion method is described in more detail. We show that it can be applied to understand interactions in the alloys, to generate the representative structures of alloys and to predict migration barriers in alloys. We describe the methods to compute the effective cluster interactions and to assess the accuracy of the model. Finally, we present the examples of Monte Carlo simulations with parameters obtained from cluster expansion method. We show that the ordering in alloys can be predicted by the calculations of Warren-Cowley parameters. We investigate also the role of entropy in the stability of alloys at elevated temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 12)

Pages:

1-22

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.M. Martin, Electronic structure : basic theory and practical methods, Cambridge University Press, (2008).

Google Scholar

[2] L. Piela, Ideas of quantum chemistry, Elsevier, (2014).

Google Scholar

[3] J. Hafner, Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond, J. Comput. Chem. 29 (2008) 2044–(2078).

DOI: 10.1002/jcc.21057

Google Scholar

[4] M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys. 389 (1927) 457–484.

DOI: 10.1002/andp.19273892002

Google Scholar

[5] H. Hellmann, A New Approximation Method in the Problem of Many Electrons, J. Chem. Phys. 3 (1935) 61–61.

Google Scholar

[6] R.P. Feynman, Forces in molecules, Phys. Rev. 56 (1939) 340–343.

Google Scholar

[7] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B. 136 (1964) 864.

Google Scholar

[8] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[9] J. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B (1986) 8822–8824.

DOI: 10.1103/physrevb.33.8822

Google Scholar

[10] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set., Phys. Rev. B 54 (1996) 11169–11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[11] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[12] P. Blaha, K. Schwarz, Electron densities and chemical bonding in TiC, TiN, and TiO derived from energy band calculations, Int. J. Quantum Chem. 23 (1983) 1535–1552.

DOI: 10.1002/qua.560230435

Google Scholar

[13] M.C. Payne, M.P. Teter, T.A. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045–1097.

DOI: 10.1103/revmodphys.64.1045

Google Scholar

[14] X. Gonze, J. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. Rigananese, et al., First-principles computation of material properties: the ABINIT software project, Comput. Mater. Sci. 25 (2002) 478–492.

DOI: 10.1016/s0927-0256(02)00325-7

Google Scholar

[15] Quantum ESPRESSO, http://www.quantum-espresso.org.

Google Scholar

[16] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, et al., The SIESTA method for ab initio order- N materials simulation, J. Phys. Condens. Matter. 14 (2002) 2745–2779.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[17] G. Mills, H. Jónsson, Quantum and thermal effects in H 2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett. 72 (1994) 1124–1127.

DOI: 10.1103/PhysRevLett.72.1124

Google Scholar

[18] G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113 (2000) 9978–9985.

DOI: 10.1063/1.1323224

Google Scholar

[19] G. Henkelman, B.P. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.

DOI: 10.1063/1.1329672

Google Scholar

[20] S.L. Dudarev, Density Functional Theory Models for Radiation Damage*, Annu. Rev. Mater. Res. 43 (2013) 35–61.

DOI: 10.1146/annurev-matsci-071312-121626

Google Scholar

[21] D. Nguyen-Manh, S.L. Dudarev, A.P. Horsfield, Systematic group-specific trends for point defects in bcc transition metals: An ab initio study, J. Nucl. Mater. 367 (2007) 257–262.

DOI: 10.1016/j.jnucmat.2007.03.006

Google Scholar

[22] P.A. Korzhavyi, I.A. Abrikosov, B. Johansson, Ab Initio Study of Vacancies in Metals and Compounds, in: Prop. Complex Inorg. Solids 2, Springer US, Boston, MA, 2000: p.63–75.

DOI: 10.1007/978-1-4615-1205-9_6

Google Scholar

[23] A.D. Le Claire, Solute diffusion in dilute alloys, J. Nucl. Mater. 69–70 (1978) 70–96.

DOI: 10.1016/0022-3115(78)90237-4

Google Scholar

[24] G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys. 111 (1999) 7010.

DOI: 10.1063/1.480097

Google Scholar

[25] L. Munro, D. Wales, Defect migration in crystalline silicon, Phys. Rev. B. 59 (1999) 3969–3980.

DOI: 10.1103/physrevb.59.3969

Google Scholar

[26] R. Malek, N. Mousseau, Dynamics of lennard-jones clusters: A characterization of the activation-relaxation technique, Phys. Rev. E. 62 (2000) 7723–8.

DOI: 10.1103/physreve.62.7723

Google Scholar

[27] M.Y. Lavrentiev, D. Nguyen-Manh, S.L. Dudarev, Cluster Expansion Modelling of Migration Energy for Vacancy Mediated Difusion in bcc Fe-Cr, Fifth Int. Conf. Multiscale Mater. Model. (MMM 2010). (2010) 703–706.

DOI: 10.1103/physrevb.81.184202

Google Scholar

[28] D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, S.L. Dudarev, First-principles models for phase stability and radiation defects in structural materials for future fusion power-plant applications, J. Mater. Sci. 47 (2012) 7385–7398.

DOI: 10.1007/s10853-012-6657-y

Google Scholar

[29] A. Van der Ven, G. Ceder, M. Asta, P. Tepesch, First-principles theory of ionic diffusion with nondilute carriers, Phys. Rev. B. 64 (2001) 184307.

DOI: 10.1103/physrevb.64.184307

Google Scholar

[30] P. Sowa, R. Kozubski, a. Biborski, E.V. Levchenko, a. V. Evteev, I.V. Belova, et al., Self-diffusion and order–order, kinetics in B2-ordering AB binary systems with a tendency for triple-defect formation: Monte Carlo simulation, Philos. Mag. 93 (2013) 1987–(1998).

DOI: 10.1080/14786435.2012.742591

Google Scholar

[31] A. Zunger, S. Wei, L. Ferreira, J. Bernard, Special quasirandom structures, Phys. Rev. Lett. 65 (1990) 353–356.

DOI: 10.1103/physrevlett.65.353

Google Scholar

[32] J.M. Sanchez, F. Ducastelle, D. Gratias, Generalized cluster description of multicomponent systems, Physica A. 128 (1984) 334–350.

DOI: 10.1016/0378-4371(84)90096-7

Google Scholar

[33] R. Magri, A. Zunger, Real-space description of semiconducting band gaps in substitutional systems, Phys. Rev. B. 44 (1991) 8672–8684.

DOI: 10.1103/physrevb.44.8672

Google Scholar

[34] S.H. Wei, L.G. Ferreira, A. Zunger, First-principles calculation of temperature-composition phase diagrams of semiconductor alloys, Phys. Rev. B. 41 (1990) 8240–8269.

DOI: 10.1103/physrevb.41.8240

Google Scholar

[35] G.D. Garbulsky, G. Ceder, Contribution of the vibrational free energy to phase stability in substitutional alloys: Methods and trends, Phys. Rev. B. 53 (1996) 8993.

DOI: 10.1103/physrevb.53.8993

Google Scholar

[36] M.Y. Lavrentiev, D. Nguyen-Manh, S.L. Dudarev, Magnetic cluster expansion model for bcc-fcc transitions in Fe and Fe-Cr alloys, Phys. Rev. B. 81 (2010) 184202.

DOI: 10.1103/physrevb.81.184202

Google Scholar

[37] M.Y. Lavrentiev, J.S. Wrobel, D. Nguyen-Manh, S.L. Dudarev, Magnetic and Thermodynamic properties of face-centered cubic Fe-Ni alloys, Phys. Chem. Chem. Phys. 16 (2014) 16049–16059.

DOI: 10.1039/c4cp01366b

Google Scholar

[38] A. van de Walle, G. Ceder, The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. Mod. Phys. 74 (2002) 11–45.

DOI: 10.1103/revmodphys.74.11

Google Scholar

[39] J.S. Wróbel, D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, S.L. Dudarev, Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys, Phys. Rev. B. 91 (2015) 24108.

DOI: 10.1103/physrevb.91.024108

Google Scholar

[40] A. van de Walle, Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit, Calphad. 33 (2009) 266–278.

DOI: 10.1016/j.calphad.2008.12.005

Google Scholar

[41] I. Toda-Caraballo, J.S. Wróbel, S.L. Dudarev, D. Nguyen-Manh, P.E.J. Rivera-Díaz-del-Castillo, Interatomic spacing distribution in multicomponent alloys, Acta Mater. 97 (2015) 156–169.

DOI: 10.1016/j.actamat.2015.07.010

Google Scholar

[42] J.S. Wróbel, D. Nguyen-Manh, K.J. Kurzydłowski, S.L. Dudarev, A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys, J. Phys. Condens. Matter. 29 (2017) 145403.

DOI: 10.1088/1361-648x/aa5f37

Google Scholar

[43] A. van de Walle, M. Asta, G. Ceder, The alloy theoretic automated toolkit: A user guide, Calphad. 26 (2002) 539–553.

DOI: 10.1016/s0364-5916(02)80006-2

Google Scholar

[44] D. Lerch, O. Wieckhorst, G.L.W. Hart, R.W. Forcade, S. Müller, UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input, Model. Simul. Mater. Sci. Eng. 17 (2009) 55003.

DOI: 10.1088/0965-0393/17/5/055003

Google Scholar

[45] A. Seko, CLUPAN, http://clupan.sourceforge.net/.

Google Scholar

[46] J. Connolly, A. Williams, Density-functional theory applied to phase transformations in transition-metal alloys, Phys. Rev. B. 27 (1983) 5169–5172.

DOI: 10.1103/physrevb.27.5169

Google Scholar

[47] A. van de Walle, G. Ceder, Automating first-principles phase diagram calculations, J. Phase Equilibria. (2002) 1–21.

DOI: 10.1361/105497102770331596

Google Scholar

[48] D. Nguyen-Manh, M.Y. Lavrentiev, S.L. Dudarev, Magnetic origin of nano-clustering and point defect interaction in Fe–Cr alloys: an ab-initio study, J. Comput. Mater. Des. 14 (2007) 159–169.

DOI: 10.1007/s10820-007-9079-4

Google Scholar

[49] P. Erhart, B. Sadigh, A. Caro, Are there stable long-range ordered Fe1−x Crx compounds?, Appl. Phys. Lett. 92 (2008) 141904.

DOI: 10.1063/1.2907337

Google Scholar

[50] I. Mirebeau, M. Kennion, G. Parette, First Measurement of Short-Range-Order Inversion as a Function of Concentration in a Transition Alloy, Phys. Rev. Lett. 53 (1984) 687.

DOI: 10.1103/physrevlett.53.687

Google Scholar

[51] G. Ceder, G. Garbulsky, D. Avis, K. Fukuda, Ground states of a ternary fcc lattice model with nearest-and next-nearest-neighbor interactions, Phys. Rev. B. 49 (1994) 1–8.

DOI: 10.1103/physrevb.49.1

Google Scholar

[52] A. Xu, C. Beck, D.E.J. Armstrong, K. Rajan, G.D.W. Smith, P.A.J. Bagot, et al., Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements, Acta Mater. 87 (2015) 121–127.

DOI: 10.1016/j.actamat.2014.12.049

Google Scholar

[53] M. Klimenkov, U. Jäntsch, M. Rieth, H.C. Schneider, D.E.J. Armstrong, J. Gibson, et al., Effect of neutron irradiation on the microstructure of tungsten, Nucl. Mater. Energy. 9 (2016) 4–7.

DOI: 10.1016/j.nme.2016.09.010

Google Scholar

[54] M.Y. Lavrentiev, S.L. Dudarev, D. Nguyen-Manh, Magnetic cluster expansion simulations of FeCr alloys, J. Nucl. Mater. 386–388 (2009) 22–25.

DOI: 10.1016/j.jnucmat.2008.12.052

Google Scholar

[55] M.E.J. Newman, G.T. Barkema, Monte Carlo methods in statistical physics, Clarendon Press, (1999).

Google Scholar

[56] J. Wróbel, L.G.H. Jr, W. Wolf, S.L. Shang, Z.K. Liu, K.J. Kurzydłowski, Thermodynamic and mechanical properties of lanthanum – magnesium phases from density functional theory, J. Alloys Compd. 512 (2012) 296–310.

DOI: 10.1016/j.jallcom.2011.09.085

Google Scholar

[57] A. Berche, P. Benigni, J. Rogez, M.-C. Record, Re-investigation of the La–Mg phase diagram, J. Therm. Anal. Calorim. 107 (2012) 797–807.

DOI: 10.1007/s10973-011-1441-9

Google Scholar

[58] K. Parlinski, Z. Li, Y. Kawazoe, First-Principles Determination of the Soft Mode in Cubic ZrO2, Phys. Rev. Lett. 4063 (1997) 4063–4066.

DOI: 10.1103/physrevlett.78.4063

Google Scholar

[59] S. Baroni, P. Giannozzi, A. Testa, Green's-function approach to linear response in solids, Phys. Rev. Lett. 58 (1987) 1861–1864.

DOI: 10.1103/physrevlett.58.1861

Google Scholar

[60] A. Fernandez-Caballero, J.S. Wróbel, P. Mummery, D. Nguyen-Manh, Short-range order in high-entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system, J. Phase Equilibria Diffus. 38 (2017) 391–403.

DOI: 10.1007/s11669-017-0582-3

Google Scholar

[61] J.S. Wróbel, D. Nguyen-Manh, S.L. Dudarev, K.J. Kurzydłowski, Point defect properties of ternary fcc Fe-Cr-Ni alloys, Nucl. Instr. Meth. Phys. Res. B 393 (2016) 126–129.

DOI: 10.1016/j.nimb.2016.10.024

Google Scholar