[1]
R.M. Martin, Electronic structure : basic theory and practical methods, Cambridge University Press, (2008).
Google Scholar
[2]
L. Piela, Ideas of quantum chemistry, Elsevier, (2014).
Google Scholar
[3]
J. Hafner, Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond, J. Comput. Chem. 29 (2008) 2044–(2078).
DOI: 10.1002/jcc.21057
Google Scholar
[4]
M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys. 389 (1927) 457–484.
DOI: 10.1002/andp.19273892002
Google Scholar
[5]
H. Hellmann, A New Approximation Method in the Problem of Many Electrons, J. Chem. Phys. 3 (1935) 61–61.
Google Scholar
[6]
R.P. Feynman, Forces in molecules, Phys. Rev. 56 (1939) 340–343.
Google Scholar
[7]
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B. 136 (1964) 864.
Google Scholar
[8]
W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[9]
J. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B (1986) 8822–8824.
DOI: 10.1103/physrevb.33.8822
Google Scholar
[10]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set., Phys. Rev. B 54 (1996) 11169–11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[11]
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[12]
P. Blaha, K. Schwarz, Electron densities and chemical bonding in TiC, TiN, and TiO derived from energy band calculations, Int. J. Quantum Chem. 23 (1983) 1535–1552.
DOI: 10.1002/qua.560230435
Google Scholar
[13]
M.C. Payne, M.P. Teter, T.A. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045–1097.
DOI: 10.1103/revmodphys.64.1045
Google Scholar
[14]
X. Gonze, J. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. Rigananese, et al., First-principles computation of material properties: the ABINIT software project, Comput. Mater. Sci. 25 (2002) 478–492.
DOI: 10.1016/s0927-0256(02)00325-7
Google Scholar
[15]
Quantum ESPRESSO, http://www.quantum-espresso.org.
Google Scholar
[16]
J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, et al., The SIESTA method for ab initio order- N materials simulation, J. Phys. Condens. Matter. 14 (2002) 2745–2779.
DOI: 10.1088/0953-8984/14/11/302
Google Scholar
[17]
G. Mills, H. Jónsson, Quantum and thermal effects in H 2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett. 72 (1994) 1124–1127.
DOI: 10.1103/PhysRevLett.72.1124
Google Scholar
[18]
G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113 (2000) 9978–9985.
DOI: 10.1063/1.1323224
Google Scholar
[19]
G. Henkelman, B.P. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.
DOI: 10.1063/1.1329672
Google Scholar
[20]
S.L. Dudarev, Density Functional Theory Models for Radiation Damage*, Annu. Rev. Mater. Res. 43 (2013) 35–61.
DOI: 10.1146/annurev-matsci-071312-121626
Google Scholar
[21]
D. Nguyen-Manh, S.L. Dudarev, A.P. Horsfield, Systematic group-specific trends for point defects in bcc transition metals: An ab initio study, J. Nucl. Mater. 367 (2007) 257–262.
DOI: 10.1016/j.jnucmat.2007.03.006
Google Scholar
[22]
P.A. Korzhavyi, I.A. Abrikosov, B. Johansson, Ab Initio Study of Vacancies in Metals and Compounds, in: Prop. Complex Inorg. Solids 2, Springer US, Boston, MA, 2000: p.63–75.
DOI: 10.1007/978-1-4615-1205-9_6
Google Scholar
[23]
A.D. Le Claire, Solute diffusion in dilute alloys, J. Nucl. Mater. 69–70 (1978) 70–96.
DOI: 10.1016/0022-3115(78)90237-4
Google Scholar
[24]
G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys. 111 (1999) 7010.
DOI: 10.1063/1.480097
Google Scholar
[25]
L. Munro, D. Wales, Defect migration in crystalline silicon, Phys. Rev. B. 59 (1999) 3969–3980.
DOI: 10.1103/physrevb.59.3969
Google Scholar
[26]
R. Malek, N. Mousseau, Dynamics of lennard-jones clusters: A characterization of the activation-relaxation technique, Phys. Rev. E. 62 (2000) 7723–8.
DOI: 10.1103/physreve.62.7723
Google Scholar
[27]
M.Y. Lavrentiev, D. Nguyen-Manh, S.L. Dudarev, Cluster Expansion Modelling of Migration Energy for Vacancy Mediated Difusion in bcc Fe-Cr, Fifth Int. Conf. Multiscale Mater. Model. (MMM 2010). (2010) 703–706.
DOI: 10.1103/physrevb.81.184202
Google Scholar
[28]
D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, S.L. Dudarev, First-principles models for phase stability and radiation defects in structural materials for future fusion power-plant applications, J. Mater. Sci. 47 (2012) 7385–7398.
DOI: 10.1007/s10853-012-6657-y
Google Scholar
[29]
A. Van der Ven, G. Ceder, M. Asta, P. Tepesch, First-principles theory of ionic diffusion with nondilute carriers, Phys. Rev. B. 64 (2001) 184307.
DOI: 10.1103/physrevb.64.184307
Google Scholar
[30]
P. Sowa, R. Kozubski, a. Biborski, E.V. Levchenko, a. V. Evteev, I.V. Belova, et al., Self-diffusion and order–order, kinetics in B2-ordering AB binary systems with a tendency for triple-defect formation: Monte Carlo simulation, Philos. Mag. 93 (2013) 1987–(1998).
DOI: 10.1080/14786435.2012.742591
Google Scholar
[31]
A. Zunger, S. Wei, L. Ferreira, J. Bernard, Special quasirandom structures, Phys. Rev. Lett. 65 (1990) 353–356.
DOI: 10.1103/physrevlett.65.353
Google Scholar
[32]
J.M. Sanchez, F. Ducastelle, D. Gratias, Generalized cluster description of multicomponent systems, Physica A. 128 (1984) 334–350.
DOI: 10.1016/0378-4371(84)90096-7
Google Scholar
[33]
R. Magri, A. Zunger, Real-space description of semiconducting band gaps in substitutional systems, Phys. Rev. B. 44 (1991) 8672–8684.
DOI: 10.1103/physrevb.44.8672
Google Scholar
[34]
S.H. Wei, L.G. Ferreira, A. Zunger, First-principles calculation of temperature-composition phase diagrams of semiconductor alloys, Phys. Rev. B. 41 (1990) 8240–8269.
DOI: 10.1103/physrevb.41.8240
Google Scholar
[35]
G.D. Garbulsky, G. Ceder, Contribution of the vibrational free energy to phase stability in substitutional alloys: Methods and trends, Phys. Rev. B. 53 (1996) 8993.
DOI: 10.1103/physrevb.53.8993
Google Scholar
[36]
M.Y. Lavrentiev, D. Nguyen-Manh, S.L. Dudarev, Magnetic cluster expansion model for bcc-fcc transitions in Fe and Fe-Cr alloys, Phys. Rev. B. 81 (2010) 184202.
DOI: 10.1103/physrevb.81.184202
Google Scholar
[37]
M.Y. Lavrentiev, J.S. Wrobel, D. Nguyen-Manh, S.L. Dudarev, Magnetic and Thermodynamic properties of face-centered cubic Fe-Ni alloys, Phys. Chem. Chem. Phys. 16 (2014) 16049–16059.
DOI: 10.1039/c4cp01366b
Google Scholar
[38]
A. van de Walle, G. Ceder, The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. Mod. Phys. 74 (2002) 11–45.
DOI: 10.1103/revmodphys.74.11
Google Scholar
[39]
J.S. Wróbel, D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, S.L. Dudarev, Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys, Phys. Rev. B. 91 (2015) 24108.
DOI: 10.1103/physrevb.91.024108
Google Scholar
[40]
A. van de Walle, Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit, Calphad. 33 (2009) 266–278.
DOI: 10.1016/j.calphad.2008.12.005
Google Scholar
[41]
I. Toda-Caraballo, J.S. Wróbel, S.L. Dudarev, D. Nguyen-Manh, P.E.J. Rivera-Díaz-del-Castillo, Interatomic spacing distribution in multicomponent alloys, Acta Mater. 97 (2015) 156–169.
DOI: 10.1016/j.actamat.2015.07.010
Google Scholar
[42]
J.S. Wróbel, D. Nguyen-Manh, K.J. Kurzydłowski, S.L. Dudarev, A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys, J. Phys. Condens. Matter. 29 (2017) 145403.
DOI: 10.1088/1361-648x/aa5f37
Google Scholar
[43]
A. van de Walle, M. Asta, G. Ceder, The alloy theoretic automated toolkit: A user guide, Calphad. 26 (2002) 539–553.
DOI: 10.1016/s0364-5916(02)80006-2
Google Scholar
[44]
D. Lerch, O. Wieckhorst, G.L.W. Hart, R.W. Forcade, S. Müller, UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input, Model. Simul. Mater. Sci. Eng. 17 (2009) 55003.
DOI: 10.1088/0965-0393/17/5/055003
Google Scholar
[45]
A. Seko, CLUPAN, http://clupan.sourceforge.net/.
Google Scholar
[46]
J. Connolly, A. Williams, Density-functional theory applied to phase transformations in transition-metal alloys, Phys. Rev. B. 27 (1983) 5169–5172.
DOI: 10.1103/physrevb.27.5169
Google Scholar
[47]
A. van de Walle, G. Ceder, Automating first-principles phase diagram calculations, J. Phase Equilibria. (2002) 1–21.
DOI: 10.1361/105497102770331596
Google Scholar
[48]
D. Nguyen-Manh, M.Y. Lavrentiev, S.L. Dudarev, Magnetic origin of nano-clustering and point defect interaction in Fe–Cr alloys: an ab-initio study, J. Comput. Mater. Des. 14 (2007) 159–169.
DOI: 10.1007/s10820-007-9079-4
Google Scholar
[49]
P. Erhart, B. Sadigh, A. Caro, Are there stable long-range ordered Fe1−x Crx compounds?, Appl. Phys. Lett. 92 (2008) 141904.
DOI: 10.1063/1.2907337
Google Scholar
[50]
I. Mirebeau, M. Kennion, G. Parette, First Measurement of Short-Range-Order Inversion as a Function of Concentration in a Transition Alloy, Phys. Rev. Lett. 53 (1984) 687.
DOI: 10.1103/physrevlett.53.687
Google Scholar
[51]
G. Ceder, G. Garbulsky, D. Avis, K. Fukuda, Ground states of a ternary fcc lattice model with nearest-and next-nearest-neighbor interactions, Phys. Rev. B. 49 (1994) 1–8.
DOI: 10.1103/physrevb.49.1
Google Scholar
[52]
A. Xu, C. Beck, D.E.J. Armstrong, K. Rajan, G.D.W. Smith, P.A.J. Bagot, et al., Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements, Acta Mater. 87 (2015) 121–127.
DOI: 10.1016/j.actamat.2014.12.049
Google Scholar
[53]
M. Klimenkov, U. Jäntsch, M. Rieth, H.C. Schneider, D.E.J. Armstrong, J. Gibson, et al., Effect of neutron irradiation on the microstructure of tungsten, Nucl. Mater. Energy. 9 (2016) 4–7.
DOI: 10.1016/j.nme.2016.09.010
Google Scholar
[54]
M.Y. Lavrentiev, S.L. Dudarev, D. Nguyen-Manh, Magnetic cluster expansion simulations of FeCr alloys, J. Nucl. Mater. 386–388 (2009) 22–25.
DOI: 10.1016/j.jnucmat.2008.12.052
Google Scholar
[55]
M.E.J. Newman, G.T. Barkema, Monte Carlo methods in statistical physics, Clarendon Press, (1999).
Google Scholar
[56]
J. Wróbel, L.G.H. Jr, W. Wolf, S.L. Shang, Z.K. Liu, K.J. Kurzydłowski, Thermodynamic and mechanical properties of lanthanum – magnesium phases from density functional theory, J. Alloys Compd. 512 (2012) 296–310.
DOI: 10.1016/j.jallcom.2011.09.085
Google Scholar
[57]
A. Berche, P. Benigni, J. Rogez, M.-C. Record, Re-investigation of the La–Mg phase diagram, J. Therm. Anal. Calorim. 107 (2012) 797–807.
DOI: 10.1007/s10973-011-1441-9
Google Scholar
[58]
K. Parlinski, Z. Li, Y. Kawazoe, First-Principles Determination of the Soft Mode in Cubic ZrO2, Phys. Rev. Lett. 4063 (1997) 4063–4066.
DOI: 10.1103/physrevlett.78.4063
Google Scholar
[59]
S. Baroni, P. Giannozzi, A. Testa, Green's-function approach to linear response in solids, Phys. Rev. Lett. 58 (1987) 1861–1864.
DOI: 10.1103/physrevlett.58.1861
Google Scholar
[60]
A. Fernandez-Caballero, J.S. Wróbel, P. Mummery, D. Nguyen-Manh, Short-range order in high-entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system, J. Phase Equilibria Diffus. 38 (2017) 391–403.
DOI: 10.1007/s11669-017-0582-3
Google Scholar
[61]
J.S. Wróbel, D. Nguyen-Manh, S.L. Dudarev, K.J. Kurzydłowski, Point defect properties of ternary fcc Fe-Cr-Ni alloys, Nucl. Instr. Meth. Phys. Res. B 393 (2016) 126–129.
DOI: 10.1016/j.nimb.2016.10.024
Google Scholar