Diffusion in Condensed Matter by Finite Element Method

Article Preview

Abstract:

In this Chapter, the finite element simulations of diffusion processes in homogeneous and polycrystalline materials are presented as well as some analytical solutions and implementations of basic diffusion relations. For the homogeneous materials the presented examples show the changes in time of the concentration of diffusing matter within the semi-infinite system and simulation of anisotropic nature of diffusion processes.The polycrystalline materials have been analysed for three cases, namely influence of average grain size and the homogeneity of grain size on the macroscopic diffusivity as well as simulation of the diffusion strains. The homogenisation technique has been used to estimate the diffusion property of grains aggregates.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 12)

Pages:

127-145

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Dobosz, M. Lewandowska, K. J. Kurzydlowski, The efect of grain size diversity on the flow stress of nanocrystalline metals by finite-element modelling, Scripta Materialia 67 (2012) 408–411.

DOI: 10.1016/j.scriptamat.2012.05.043

Google Scholar

[2] R. Dobosz, M. Lewandowska, K. J. Kurzydlowski, FEM modelling of the combined effect of grain boundaries and second phase particles on the flow stress of nanocrystalline metals, Computational Materials Science 53 (2012) 286–293.

DOI: 10.1016/j.commatsci.2011.09.029

Google Scholar

[3] R. Dobosz, M. Muzyk, Z. Pakiela, M. Lewandowska, K. J. Kurzydlowski, Simulations of the elastic properties of nanomaterials using multiscale modelling methods, Mechanics of Materials 67 (2013) 74–78.

DOI: 10.1016/j.mechmat.2013.07.010

Google Scholar

[4] ANSYS® Academic Research, Release 18, Help System, Coupled Field Analysis Guide, ANSYS, Inc.

Google Scholar

[5] J. Crank, The Mathematics of Diffusion. 2nd Edition, Oxford University Press, (1975).

Google Scholar

[6] K. Krabbenhoft, J. Krabbenhoft, Application of the Poisson-Nernst-Planck equations to the migration test, Cement and Concrete Research, Vol. 38 (2008) Pages 77-88.

DOI: 10.1016/j.cemconres.2007.08.006

Google Scholar

[7] O. Watanabe, H. M. Zbib, E. Takenouchi, Crystal plasticity: micro-shear banding in polycrystals using voronoi tessellation, International Journal of Plasticity, Volume 14, Issue 8, October 1998, Pages 771-788.

DOI: 10.1016/s0749-6419(98)00022-9

Google Scholar

[8] S. Mahadevan, Y. Zhao, Advanced computer simulation of polycrystalline microstructure, Comput. Methods Appl. Mech. Engrg. 191 (2002) 3651–3667.

DOI: 10.1016/s0045-7825(02)00260-8

Google Scholar

[9] Dong-Kyu Kim, Jae-Min Kim, Won-Woong Park, Ho Won Lee, Yong-Taek Im, Yong-Shin Lee, Three-dimensional crystal plasticity finite element analysis of microstructure and texture evolution during channel die compression of IF steel, Computational Materials Science 100 (2015) 52–60.

DOI: 10.1016/j.commatsci.2014.09.032

Google Scholar

[10] M. Uchida, T. Tokuda, N. Tada, Finite element simulation of deformation behavior of semi-crystalline polymers with multi-spherulitic mesostructured, International Journal of Mechanical Sciences 52 (2010) 158–167.

DOI: 10.1016/j.ijmecsci.2009.09.002

Google Scholar

[11] M. Nygards, P. Gudmundson, Three-dimensional periodic Voronoi grain models and micromechanical FE-simulations of a two-phase steel, Computational Materials Science 24 (2002) 513–519.

DOI: 10.1016/s0927-0256(02)00156-8

Google Scholar

[12] L. Luoa, Z. Jianga, H. Lua, D. Weib, K. Linghuc, X. Zhaod , D. Wu, Optimisation of size-controllable centroidal voronoi tessellation for FEM simulation of micro forming processes, Procedia Engineering 81 ( 2014 ) 2409 – 2414.

DOI: 10.1016/j.proeng.2014.10.342

Google Scholar

[13] M. Huang, Z. Li, J. Tong, The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature, International Journal of Plasticity 61 (2014) 112–127.

DOI: 10.1016/j.ijplas.2014.06.002

Google Scholar

[14] A. Rinaldi, D. Krajcinovic, P. Peralta, Ying-Cheng Lai, Lattice models of polycrystalline microstructures: A quantitative approach, Mechanics of Materials 40 (2008) 17–36.

DOI: 10.1016/j.mechmat.2007.02.005

Google Scholar

[15] E. Legrand, J. Bouhattate, X. Feaugas, S. Touzain, H. Garmestani, M. Khaleel, D.S. Li, Numerical analysis of the influence of scale effects and microstructure on hydrogen diffusion in polycrystalline aggregates, Computational Materials Science 71 (2013) 1–9.

DOI: 10.1016/j.commatsci.2013.01.018

Google Scholar

[16] H. Muto and M. Sakai, The large-scale deformation of polycrystalline aggregates: cooperative grain-boundary sliding, Acta mater. 48 (2000) 4161–4167.

DOI: 10.1016/s1359-6454(00)00169-5

Google Scholar

[17] B. Osman Hoch, A. Metsue, J. Bouhattate, X. Feaugas, Effects of grain-boundary networks on the macroscopic diffusivity of hydrogen in polycrystalline materials, Computational Materials Science 97 (2015) 276–284.

DOI: 10.1016/j.commatsci.2014.10.048

Google Scholar

[18] H. Mehrer, Difusion in Solids. Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Series in Solid-State Sciences 155, Berlin, (2007).

Google Scholar

[19] S. Jothi , N. Winzer, T. N. Croft, S. G. R. Brown , Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities, Journal of Alloys and Compounds 645 (2015) S247–S251.

DOI: 10.1016/j.jallcom.2014.12.247

Google Scholar

[20] S.C. Tjong and Haydn Chen, Nanocrystalline materials and coatings, Materials Science and Engineering: R: Reports, Volume 45, Issues 1-2, September 2004, Pages 1-88.

Google Scholar

[21] M.Hori, S. Nemat-Nasser, On two micromechanics theories for determining micro±macro relations in heterogeneous solids, Mechanics of Materials 31 (1999) 667-682.

DOI: 10.1016/s0167-6636(99)00020-4

Google Scholar

[22] A. Dasgupta, R. K. Agarwal, S. M. Bhandarkar, Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties, Composites Science and Technology 56 (1996) 209-223.

DOI: 10.1016/0266-3538(95)00111-5

Google Scholar

[23] C. Zuorong, Z. Dechao, M. Lu, L. Ye, Evaluation of elastic properties of 3-D (4-step) regular braided composites by a homogenisation method, Composite Structures 47 (1999) 477–482.

DOI: 10.1016/s0263-8223(00)00026-x

Google Scholar

[24] K. Long, X. Du, S. Xu, Y. M. Xie, Maximizing the effective Young's modulus of a composite material by exploiting the Poisson effect, Composite Structures 153 (2016) 593–600.

DOI: 10.1016/j.compstruct.2016.06.061

Google Scholar

[25] C. Redenbach, Microstructure models for cellular materials, Computational Materials Science 44 (2009) 1397–1407.

DOI: 10.1016/j.commatsci.2008.09.018

Google Scholar

[26] S. Kobayashi, R. Kobayashi, T. Watanabe, Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel, Acta Materialia 102 (2016) 397–405.

DOI: 10.1016/j.actamat.2015.08.075

Google Scholar

[27] T. Lehmann, Ch. Reimann, E. Meissner, J. Friedrich, Clarification of the relation between the grain structure of industrial grown mc-Si and the area fraction of electrical active defects by means of statistical grain structure evaluation, Acta Materialia 106 (2016) 98–105.

DOI: 10.1016/j.actamat.2015.12.049

Google Scholar

[28] R. Kirchheim, Stress and electromigration in Al-lines of integrated circuits, Acta Metallurgica et Materialia, vol. 40 (1992) Pages 309-323.

DOI: 10.1016/0956-7151(92)90305-x

Google Scholar

[29] T. A. Ryumshina, S. P. Illyashenko, Study of stress and strain felds in an infnite plate exposed to hydrogen diffusion, International Journal of Hydrogen Energy 24 (1999) 825-828.

DOI: 10.1016/s0360-3199(98)00153-0

Google Scholar

[30] S. Lee, W. L. Wang, J. R. Chen, Diffusion-induced stresses in a hollow cylinder: Constant surface stresses, Materials Chemistry and Physics 64 (2000) 123–130.

DOI: 10.1016/s0254-0584(99)00255-2

Google Scholar

[31] Z. Wang, D. Shu, M. Wang, N. Ming, Strain effect on diffusion properties of oxygen vacancies in bulk and subsurface of rutile TiO2, Surface Science 606 (2012) 186–191.

DOI: 10.1016/j.susc.2011.09.014

Google Scholar