[1]
J. JanczakRusch, M. Chiodi, C. Cancellieri, F. Moszner, R. Hauert, G. Pigozzi, and L. P. H. Jeurgens. Structural evolution of agcu nanoalloys confined between aln nanolayers upon fast heating. Phys. Chem. Chem. Phys., 17:28228-28238, (2015).
DOI: 10.1039/c5cp00782h
Google Scholar
[2]
F. Moszner, C. Cancellieri, M. Chiodi, S. Yoon, D. Ariosa, J. JanczakRusch, and L. P. H. Jeur gens. Thermal stability of Cu/W nanomultilayers. Acta Materialia, 107:345-353, April (2016).
DOI: 10.1016/j.actamat.2016.02.003
Google Scholar
[3]
G. B. Smith. Nanostructured thin films A critical review. In A. Lakhtakia, G. Dewar, and M. W. McCall, editors, Complex Mediums Iii: Beyond Linear Isotropic Dielectrics, volume 4806, pages 207-221. 2002. WOS:000177782700021.
DOI: 10.1117/12.472985
Google Scholar
[4]
M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, and C. Ziebert. Concepts for the de sign of advanced nanoscale PVD multilayer protective thin films. Journal of Alloys and Com pounds, 483(12):321-333, August 2009. WOS:000270619600078.
DOI: 10.1016/j.jallcom.2008.08.133
Google Scholar
[5]
G. Kaptay, J. JanczakRusch, and L. P. H. Jeurgens. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers. Journal of Materials Engineering and Performance, 25(8):3275-3284, August (2016).
DOI: 10.1007/s11665-016-2123-3
Google Scholar
[6]
J. JanczakRusch, G. Kaptay, and L. P. H. Jeurgens. Interfacial Design for Joining Technologies: An Historical Perspective. Journal of Materials Engineering and Performance, 23(5):1608- 1613, May (2014).
DOI: 10.1007/s11665-014-0928-5
Google Scholar
[7]
Vasilios Alexiades and Alan Solomon. Mathematical Modelling of melting and freezing pro cesses. Hemisphere Publishing Corporation, (1981).
Google Scholar
[8]
Henry Hu and Stavros A. Argyropoulos. Mathematical modelling of solidification and melting: a review. Modelling and Simulation in Materials Science and Engineering, 4(4):371, (1996).
DOI: 10.1088/0965-0393/4/4/004
Google Scholar
[9]
Nikolas Provatas and Ken Elder. PhaseField Methods in Materials Science and Engineering. WileyVCH Verlag GmbH & Co. KGaA, (2010).
Google Scholar
[10]
Yongmei M. Jin and Armen G. Khachaturyan. Atomic density function theory and modeling of microstructure evolution at the atomic scale. Journal of Applied Physics, 100(1):013519, July (2006).
DOI: 10.1063/1.2213353
Google Scholar
[11]
Ferdinand Haider, Rafal Kozubski, and T.a. Abinandanan. Simulation Techniques. In Wolfgang Pfeiler, editor, Alloy Physics, pages 653-706. WileyVCH Verlag GmbH & Co. KGaA, (2007).
DOI: 10.1002/9783527614196.ch12
Google Scholar
[12]
Y. Mishin, M. Asta, and Ju Li. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Materialia, 58(4):1117-1151, February 2010. WOS:000274616000001.
DOI: 10.1016/j.actamat.2009.10.049
Google Scholar
[13]
Roger H. French, V. Adrian Parsegian, Rudolf Podgornik, Rick F. Rajter, Anand Jagota, Jian Luo, Dilip Asthagiri, Manoj K. Chaudhury, Yetming Chiang, Steve Granick, Sergei Kalinin, Mehran Kardar, Roland Kjellander, David C. Langreth, Jennifer Lewis, Steve Lustig, David Wesolowski, John S. Wettlaufer, WaiYim Ching, Mike Finnis, Frank Houlihan, O. Anatole von Lilienfeld, Carel Jan van Oss, and Thomas Zemb. Long range interactions in nanoscale science. Reviews of Modern Physics, 82(2):1887-1944, June 2010. WOS:000278659800001.[14] M. I. Mendelev, M. J. Kramer, C. A. Becker, and M. Asta. Analysis of semiempirical inter atomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philosophical Magazine, 88(12):1723-1750, April (2008).
DOI: 10.1103/revmodphys.82.1887
Google Scholar
[15]
M. I. Mendelev, D. J. Sordelet, and M. J. Kramer. Using atomistic computer simulations to an alyze xray diffraction data from metallic glasses. Journal of Applied Physics, 102(4):043501, August (2007).
DOI: 10.1063/1.2769157
Google Scholar
[16]
M. I. Mendelev, M. J. Kramer, R. T. Ott, D. J. Sordelet, D. Yagodin, and P. Popel. Development of suitable interatomic potentials for simulation of liquid and amorphous Cu?Zr alloys. Philo sophical Magazine, 89(11):967-987, April (2009).
DOI: 10.1080/14786430902832773
Google Scholar
[17]
Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress. Structural sta bility and lattice defects in copper: Ab initio, tightbinding, and embeddedatom calculations. Physical Review B, 63(22):224106, May (2001).
DOI: 10.1103/physrevb.63.224106
Google Scholar
[18]
G. Bonny, R. C. Pasianot, N. Castin, and L. Malerba. Ternary Fe?Cu?Ni manybody potential to model reactor pressure vessel steels: First validation by simulated thermal annealing. Philo sophical Magazine, 89(3436):3531-3546, December (2009).
DOI: 10.1080/14786430903299824
Google Scholar
[19]
J. B. Adams, S. M. Foiles, and W. G. Wolfer. Selfdiffusion and impurity diffusion of fcc metals using the fivefrequency model and the Embedded Atom Method. Journal of Materials Research, 4(1):102-112, January (1989).
DOI: 10.1007/978-1-4684-5703-2_43
Google Scholar
[20]
S. M. Foiles. Calculation of the surface segregation of NiCu alloys with the use of the embeddedatom method. Physical Review B, 32(12):7685-7693, December (1985).
DOI: 10.1103/physrevb.32.7685
Google Scholar
[21]
S. M. Foiles, M. I. Baskes, and M. S. Daw. Embeddedatommethod functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 33(12):7983-7991, June (1986).
DOI: 10.1103/physrevb.33.7983
Google Scholar
[22]
J. Cai and Y. Y. Ye. Simple analytical embeddedatompotential model including a longrange force for fcc metals and their alloys. Physical Review B, 54(12):8398-8410, September (1996).
DOI: 10.1103/physrevb.54.8398
Google Scholar
[23]
X. W. Zhou, R. A. Johnson, and H. N. G. Wadley. Misfitenergyincreasing dislocations in vapordeposited CoFe/NiFe multilayers. Physical Review B, 69(14):144113, April (2004).
DOI: 10.1103/physrevb.69.144113
Google Scholar
[24]
Henry H. Wu and Dallas R. Trinkle. Cu/Ag EAM potential optimized for heteroepitaxial diffu sion from ab initio data. Computational Materials Science, 47(2):577-583, December (2009).
DOI: 10.1016/j.commatsci.2009.09.026
Google Scholar
[25]
Berk Onat and Sondan Durukano?lu. An optimized interatomic potential for Cu?Ni alloys with the embeddedatom method. Journal of Physics: Condensed Matter, 26(3):035404, (2014).
DOI: 10.1088/0953-8984/26/3/035404
Google Scholar
[26]
Seyed Moein RassoulinejadMousavi, Yijin Mao, and Yuwen Zhang. Evaluation of copper, alu minum, and nickel interatomic potentials on predicting the elastic properties. Journal of Applied Physics, 119(24):244304, June (2016).
DOI: 10.1063/1.4953676
Google Scholar
[27]
X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford Long, G. D. W. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly. Atomic scale structure of sputtered metal multilayers. Acta Materialia, 49(19):4005-4015, November (2001).
DOI: 10.1016/s1359-6454(01)00287-7
Google Scholar
[28]
Claudia Cancellieri, Frank Moszner, Mirco Chiodi, Songhak Yoon, Daniel Ariosa, Jolanta JanczakRusch, and Lars Jeurgens. Investigation of thermal stability of Cu/W multilayers by in situ Xray diffraction. Acta Crystallographica Section A, 72(a1):s418, Aug 2016.[29] F. Moszner, C. Cancellieri, C. Becker, M. Chiodi, J. JanczakRusch, and L. P. H. Jeurgens. Nanostructured cu/w brazing fillers for advanced joining applications. Journal of Materials Science and Engineering B, 6(910):226-230, October (2016).
DOI: 10.17265/2161-6221/2016.9-10.003
Google Scholar
[30]
C. Cancellieri, F. Moszner, M. Chiodi, S. Yoon, J. JanczakRusch, and L. P. H. Jeurgens. The ef fect of thermal treatment on the stress state and evolving microstructure of cu/w nanomultilayers. Journal of Applied Physics, under review, April (2016).
DOI: 10.1063/1.4967992
Google Scholar
[31]
Benjamin Lehmert, Jolanta JanczakRusch, Giancarlo Pigozzi, Peter Zuraw, Fabio La Mattina, Lukas Wojarski, Wolfgang Tillmann, and Lars P. H. Jeurgens. CopperBased Nanostructured Coatings for LowTemperature Brazing Applications. Materials Transactions, 56(7):1015-1018, (2015).
DOI: 10.2320/matertrans.mi201419
Google Scholar
[32]
Emeric Bourasseau, AhmedAmine Homman, Olivier Durand, Aziz Ghoufi, and Patrice Mal freyt. Calculation of the surface tension of liquid copper from atomistic Monte Carlo simulations. The European Physical Journal B, 86(6), (2013).
DOI: 10.1140/epjb/e2013-40226-9
Google Scholar
[33]
X. W. Zhou, R. A. Johnson, and H. N. G. Wadley. Misfitenergyincreasing dislocations in vapordeposited CoFe/NiFe multilayers. Phys. Rev. B, 69:144113-1 - 144113-10, (2004).
Google Scholar
[34]
H. Y. Hou, R. S. Wang, J. T. Wang, X. B. Liu, G. Chen, and P. Huang. An analytic bondorder potential for the FeCu system. Modelling Simul. Mater. Sci. Eng., 20 045016 (9pp):045016, (2012).
DOI: 10.1088/0965-0393/20/4/045016
Google Scholar
[35]
X.W. Zhou, D.K. Ward, M. Foster, and J.A. Zimmerman. An analytical bondorder potential for the copperhydrogen binary system. Journal of Materials Science, 50(7):2859-2875, (2015).
Google Scholar
[36]
M. Cak, T.Hammerschmidt, J. Rogal, V. Vitek, and R Drautz. Analytic bondorder potentials for the bcc refractory metals Nb, Ta, Mo and W. J. Phys.: Condens. Matter, 26:195501, (2014).
DOI: 10.1088/0953-8984/26/19/195501
Google Scholar
[37]
M. Mrovec, R. Gröger, A. G. Bailey, D. NguyenManh, C. Elsässer, and V. Vitek. Bondorder potential for simulations of extended defects in tungsten. Phys. Rev. B, 75:104119, Mar (2007).
DOI: 10.1103/physrevb.75.104119
Google Scholar
[38]
M. S. Daw and M. I. Baskes. Embeddedatom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 29(12):6443 - 6453, (1984).
DOI: 10.1103/physrevb.29.6443
Google Scholar
[39]
Yong Zhang and Edward J. Maginn. A comparison of methods for melting point calculation using molecular dynamics simulations. The Journal of Chemical Physics, 136(14):144116, April (2012).
DOI: 10.1063/1.3702587
Google Scholar
[40]
Ilyar Hamid, Meng Fang, and Haiming Duan. Molecular dynamical simulations of melting behaviors of metal clusters. AIP Advances, 5(4):047129, April (2015).
DOI: 10.1063/1.4918770
Google Scholar
[41]
F Baletto and R Ferrando. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Reviews Of Modern Physics, 77(1):371-423, (2005).
DOI: 10.1103/revmodphys.77.371
Google Scholar
[42]
Saman Alavi and Donald L. Thompson. Simulations of melting of polyatomic solids and nanoparticles. Molecular Simulation, 32(1213):999-1015, October (2006).
DOI: 10.1080/08927020600823158
Google Scholar
[43]
LAMMPS (Largescale Atomic/Molecular Massively Parallel Simulator). lammps.sandia.gov.
Google Scholar
[44]
S. Plimpton. Fast Parallel Algorithms for ShortRange Molecular Dynamics. J Comp. Phys., 117:1 - 19, (1995).
Google Scholar
[45]
A. Groß. Theoretical Surface Science: A Microscopic Perspective. Springer, 2009.[46] F. Ercolessi, O. Tomagnini, S. Iarlori, and E. Tosatti. Molecular Dynamics Simulations of Metal Surfaces: Surface Melting and NonMelting, and TipSurface Interactions. In Professor Vu Thien Binh, Professor Nicolas Garcia, and Professor Klause Dransfeld, editors, Nanosources and Ma nipulation of Atoms Under High Fields and Temperatures: Applications, number 235 in NATO ASI Series, pages 185-205. Springer Netherlands, 1993.
DOI: 10.1007/978-94-011-1729-6_16
Google Scholar
[47]
H. Hakkinen and M. Manninen. ComputerSimulation of Disordering and Premelting of LowIndex Faces of Copper. Physical Review B, 46(3):1725-1742, July 1992. WOS:A1992JE62600058.
DOI: 10.1103/physrevb.46.1725
Google Scholar
[48]
H. Hakkinen and Uzi Landman. Superheating, melting, and annealing of copper surfaces. Phys ical Review Letters, 71(7):1023-1026, August (1993).
DOI: 10.1103/physrevlett.71.1023
Google Scholar
[49]
Furio Ercolessi, Francesco D. Di Tolla, and Erio Tosatti. The microscopic origin of nonmelting and surface overheating at closepacked metal surfaces. Surface Review and Letters, 04(05):833- 837, October (1997).
DOI: 10.1142/s0218625x97000869
Google Scholar
[50]
Di Tolla, Francesco D. Interplay of Melting, Wetting, Overheating and Faceting on Metal Sur faces: Theory and Simulation. PhD thesis, SISSAISAS, Trieste, (1995).
DOI: 10.1016/s0039-6028(96)01435-5
Google Scholar
[51]
Yaroslav G. Chushak and Lawrence S. Bartell. Melting and Freezing of Gold Nanoclusters. The Journal of Physical Chemistry B, 105(47):11605-11614, November (2001).
DOI: 10.1021/jp0109426
Google Scholar
[52]
Furio Ercolessi, Wanda Andreoni, and Erio Tosatti. Melting of small gold particles: Mechanism and size effects. Physical Review Letters, 66(7):911-914, February (1991).
DOI: 10.1103/physrevlett.66.911
Google Scholar
[53]
Daniele Scopece. Sowos: an opensource program for the threedimensional wulff construction. J. Appl. Cryst., (3):811-816, April.
DOI: 10.1107/s0021889813005426
Google Scholar
[54]
J. R. Morris, C. Z. Wang, K. M. Ho, and C. T. Chan. Melting line of aluminum from simulations of coexisting phases. Phys. Rev. B, 49:3109-3115, Feb (1994).
DOI: 10.1103/physrevb.49.3109
Google Scholar