Validation of an Embedded-Atom Copper Classical Potential via Bulk and Nanostructure Simulations

Article Preview

Abstract:

The validation of classical potentials for describing multicomponent materials in complex geometries and their high temperature structural modifications (disordering and melting) requires to verify both a faithful description of the individual phases and a convincing scheme for the mixed interactions, like it is the case of the embedded atom scheme. The present paper addresses the former task for an embedded atom potential for copper, namely the widely adopted parametrization by Zhou, through application to bulk, surface and nanocluster systems. It is found that the melting point is underestimated by 200 degrees with respect to experiment, but structural and temperature-dependent properties are otherwise faithfully reproduced.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 12)

Pages:

74-92

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Janczak­Rusch, M. Chiodi, C. Cancellieri, F. Moszner, R. Hauert, G. Pigozzi, and L. P. H. Jeurgens. Structural evolution of ag­cu nano­alloys confined between aln nano­layers upon fast heating. Phys. Chem. Chem. Phys., 17:28228-28238, (2015).

DOI: 10.1039/c5cp00782h

Google Scholar

[2] F. Moszner, C. Cancellieri, M. Chiodi, S. Yoon, D. Ariosa, J. Janczak­Rusch, and L. P. H. Jeur­ gens. Thermal stability of Cu/W nano­multilayers. Acta Materialia, 107:345-353, April (2016).

DOI: 10.1016/j.actamat.2016.02.003

Google Scholar

[3] G. B. Smith. Nanostructured thin films ­ A critical review. In A. Lakhtakia, G. Dewar, and M. W. McCall, editors, Complex Mediums Iii: Beyond Linear Isotropic Dielectrics, volume 4806, pages 207-221. 2002. WOS:000177782700021.

DOI: 10.1117/12.472985

Google Scholar

[4] M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, and C. Ziebert. Concepts for the de­ sign of advanced nanoscale PVD multilayer protective thin films. Journal of Alloys and Com­ pounds, 483(1­2):321-333, August 2009. WOS:000270619600078.

DOI: 10.1016/j.jallcom.2008.08.133

Google Scholar

[5] G. Kaptay, J. Janczak­Rusch, and L. P. H. Jeurgens. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers. Journal of Materials Engineering and Performance, 25(8):3275-3284, August (2016).

DOI: 10.1007/s11665-016-2123-3

Google Scholar

[6] J. Janczak­Rusch, G. Kaptay, and L. P. H. Jeurgens. Interfacial Design for Joining Technologies: An Historical Perspective. Journal of Materials Engineering and Performance, 23(5):1608- 1613, May (2014).

DOI: 10.1007/s11665-014-0928-5

Google Scholar

[7] Vasilios Alexiades and Alan Solomon. Mathematical Modelling of melting and freezing pro­ cesses. Hemisphere Publishing Corporation, (1981).

Google Scholar

[8] Henry Hu and Stavros A. Argyropoulos. Mathematical modelling of solidification and melting: a review. Modelling and Simulation in Materials Science and Engineering, 4(4):371, (1996).

DOI: 10.1088/0965-0393/4/4/004

Google Scholar

[9] Nikolas Provatas and Ken Elder. Phase­Field Methods in Materials Science and Engineering. Wiley­VCH Verlag GmbH & Co. KGaA, (2010).

Google Scholar

[10] Yongmei M. Jin and Armen G. Khachaturyan. Atomic density function theory and modeling of microstructure evolution at the atomic scale. Journal of Applied Physics, 100(1):013519, July (2006).

DOI: 10.1063/1.2213353

Google Scholar

[11] Ferdinand Haider, Rafal Kozubski, and T.a. Abinandanan. Simulation Techniques. In Wolfgang Pfeiler, editor, Alloy Physics, pages 653-706. Wiley­VCH Verlag GmbH & Co. KGaA, (2007).

DOI: 10.1002/9783527614196.ch12

Google Scholar

[12] Y. Mishin, M. Asta, and Ju Li. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Materialia, 58(4):1117-1151, February 2010. WOS:000274616000001.

DOI: 10.1016/j.actamat.2009.10.049

Google Scholar

[13] Roger H. French, V. Adrian Parsegian, Rudolf Podgornik, Rick F. Rajter, Anand Jagota, Jian Luo, Dilip Asthagiri, Manoj K. Chaudhury, Yet­ming Chiang, Steve Granick, Sergei Kalinin, Mehran Kardar, Roland Kjellander, David C. Langreth, Jennifer Lewis, Steve Lustig, David Wesolowski, John S. Wettlaufer, Wai­Yim Ching, Mike Finnis, Frank Houlihan, O. Anatole von Lilienfeld, Carel Jan van Oss, and Thomas Zemb. Long range interactions in nanoscale science. Reviews of Modern Physics, 82(2):1887-1944, June 2010. WOS:000278659800001.[14] M. I. Mendelev, M. J. Kramer, C. A. Becker, and M. Asta. Analysis of semi­empirical inter­ atomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philosophical Magazine, 88(12):1723-1750, April (2008).

DOI: 10.1103/revmodphys.82.1887

Google Scholar

[15] M. I. Mendelev, D. J. Sordelet, and M. J. Kramer. Using atomistic computer simulations to an­ alyze x­ray diffraction data from metallic glasses. Journal of Applied Physics, 102(4):043501, August (2007).

DOI: 10.1063/1.2769157

Google Scholar

[16] M. I. Mendelev, M. J. Kramer, R. T. Ott, D. J. Sordelet, D. Yagodin, and P. Popel. Development of suitable interatomic potentials for simulation of liquid and amorphous Cu?Zr alloys. Philo­ sophical Magazine, 89(11):967-987, April (2009).

DOI: 10.1080/14786430902832773

Google Scholar

[17] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress. Structural sta­ bility and lattice defects in copper: Ab initio, tight­binding, and embedded­atom calculations. Physical Review B, 63(22):224106, May (2001).

DOI: 10.1103/physrevb.63.224106

Google Scholar

[18] G. Bonny, R. C. Pasianot, N. Castin, and L. Malerba. Ternary Fe?Cu?Ni many­body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing. Philo­ sophical Magazine, 89(34­36):3531-3546, December (2009).

DOI: 10.1080/14786430903299824

Google Scholar

[19] J. B. Adams, S. M. Foiles, and W. G. Wolfer. Self­diffusion and impurity diffusion of fcc metals using the five­frequency model and the Embedded Atom Method. Journal of Materials Research, 4(1):102-112, January (1989).

DOI: 10.1007/978-1-4684-5703-2_43

Google Scholar

[20] S. M. Foiles. Calculation of the surface segregation of Ni­Cu alloys with the use of the embedded­atom method. Physical Review B, 32(12):7685-7693, December (1985).

DOI: 10.1103/physrevb.32.7685

Google Scholar

[21] S. M. Foiles, M. I. Baskes, and M. S. Daw. Embedded­atom­method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 33(12):7983-7991, June (1986).

DOI: 10.1103/physrevb.33.7983

Google Scholar

[22] J. Cai and Y. Y. Ye. Simple analytical embedded­atom­potential model including a long­range force for fcc metals and their alloys. Physical Review B, 54(12):8398-8410, September (1996).

DOI: 10.1103/physrevb.54.8398

Google Scholar

[23] X. W. Zhou, R. A. Johnson, and H. N. G. Wadley. Misfit­energy­increasing dislocations in vapor­deposited CoFe/NiFe multilayers. Physical Review B, 69(14):144113, April (2004).

DOI: 10.1103/physrevb.69.144113

Google Scholar

[24] Henry H. Wu and Dallas R. Trinkle. Cu/Ag EAM potential optimized for heteroepitaxial diffu­ sion from ab initio data. Computational Materials Science, 47(2):577-583, December (2009).

DOI: 10.1016/j.commatsci.2009.09.026

Google Scholar

[25] Berk Onat and Sondan Durukano?lu. An optimized interatomic potential for Cu?Ni alloys with the embedded­atom method. Journal of Physics: Condensed Matter, 26(3):035404, (2014).

DOI: 10.1088/0953-8984/26/3/035404

Google Scholar

[26] Seyed Moein Rassoulinejad­Mousavi, Yijin Mao, and Yuwen Zhang. Evaluation of copper, alu­ minum, and nickel interatomic potentials on predicting the elastic properties. Journal of Applied Physics, 119(24):244304, June (2016).

DOI: 10.1063/1.4953676

Google Scholar

[27] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford­ Long, G. D. W. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly. Atomic scale structure of sputtered metal multilayers. Acta Materialia, 49(19):4005-4015, November (2001).

DOI: 10.1016/s1359-6454(01)00287-7

Google Scholar

[28] Claudia Cancellieri, Frank Moszner, Mirco Chiodi, Songhak Yoon, Daniel Ariosa, Jolanta Janczak­Rusch, and Lars Jeurgens. Investigation of thermal stability of Cu/W multilayers by in situ X­ray diffraction. Acta Crystallographica Section A, 72(a1):s418, Aug 2016.[29] F. Moszner, C. Cancellieri, C. Becker, M. Chiodi, J. Janczak­Rusch, and L. P. H. Jeurgens. Nano­structured cu/w brazing fillers for advanced joining applications. Journal of Materials Science and Engineering B, 6(9­10):226-230, October (2016).

DOI: 10.17265/2161-6221/2016.9-10.003

Google Scholar

[30] C. Cancellieri, F. Moszner, M. Chiodi, S. Yoon, J. Janczak­Rusch, and L. P. H. Jeurgens. The ef­ fect of thermal treatment on the stress state and evolving microstructure of cu/w nano­multilayers. Journal of Applied Physics, under review, April (2016).

DOI: 10.1063/1.4967992

Google Scholar

[31] Benjamin Lehmert, Jolanta Janczak­Rusch, Giancarlo Pigozzi, Peter Zuraw, Fabio La Mattina, Lukas Wojarski, Wolfgang Tillmann, and Lars P. H. Jeurgens. Copper­Based Nanostructured Coatings for Low­Temperature Brazing Applications. Materials Transactions, 56(7):1015-1018, (2015).

DOI: 10.2320/matertrans.mi201419

Google Scholar

[32] Emeric Bourasseau, Ahmed­Amine Homman, Olivier Durand, Aziz Ghoufi, and Patrice Mal­ freyt. Calculation of the surface tension of liquid copper from atomistic Monte Carlo simulations. The European Physical Journal B, 86(6), (2013).

DOI: 10.1140/epjb/e2013-40226-9

Google Scholar

[33] X. W. Zhou, R. A. Johnson, and H. N. G. Wadley. Misfit­energy­increasing dislocations in vapor­deposited CoFe/NiFe multilayers. Phys. Rev. B, 69:144113-1 - 144113-10, (2004).

Google Scholar

[34] H. Y. Hou, R. S. Wang, J. T. Wang, X. B. Liu, G. Chen, and P. Huang. An analytic bond­order potential for the Fe­Cu system. Modelling Simul. Mater. Sci. Eng., 20 045016 (9pp):045016, (2012).

DOI: 10.1088/0965-0393/20/4/045016

Google Scholar

[35] X.W. Zhou, D.K. Ward, M. Foster, and J.A. Zimmerman. An analytical bond­order potential for the copper­hydrogen binary system. Journal of Materials Science, 50(7):2859-2875, (2015).

Google Scholar

[36] M. Cak, T.Hammerschmidt, J. Rogal, V. Vitek, and R Drautz. Analytic bond­order potentials for the bcc refractory metals Nb, Ta, Mo and W. J. Phys.: Condens. Matter, 26:195501, (2014).

DOI: 10.1088/0953-8984/26/19/195501

Google Scholar

[37] M. Mrovec, R. Gröger, A. G. Bailey, D. Nguyen­Manh, C. Elsässer, and V. Vitek. Bond­order potential for simulations of extended defects in tungsten. Phys. Rev. B, 75:104119, Mar (2007).

DOI: 10.1103/physrevb.75.104119

Google Scholar

[38] M. S. Daw and M. I. Baskes. Embedded­atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 29(12):6443 - 6453, (1984).

DOI: 10.1103/physrevb.29.6443

Google Scholar

[39] Yong Zhang and Edward J. Maginn. A comparison of methods for melting point calculation using molecular dynamics simulations. The Journal of Chemical Physics, 136(14):144116, April (2012).

DOI: 10.1063/1.3702587

Google Scholar

[40] Ilyar Hamid, Meng Fang, and Haiming Duan. Molecular dynamical simulations of melting behaviors of metal clusters. AIP Advances, 5(4):047129, April (2015).

DOI: 10.1063/1.4918770

Google Scholar

[41] F Baletto and R Ferrando. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Reviews Of Modern Physics, 77(1):371-423, (2005).

DOI: 10.1103/revmodphys.77.371

Google Scholar

[42] Saman Alavi and Donald L. Thompson. Simulations of melting of polyatomic solids and nanoparticles. Molecular Simulation, 32(12­13):999-1015, October (2006).

DOI: 10.1080/08927020600823158

Google Scholar

[43] LAMMPS (Large­scale Atomic/Molecular Massively Parallel Simulator). lammps.sandia.gov.

Google Scholar

[44] S. Plimpton. Fast Parallel Algorithms for Short­Range Molecular Dynamics. J Comp. Phys., 117:1 - 19, (1995).

Google Scholar

[45] A. Groß. Theoretical Surface Science: A Microscopic Perspective. Springer, 2009.[46] F. Ercolessi, O. Tomagnini, S. Iarlori, and E. Tosatti. Molecular Dynamics Simulations of Metal Surfaces: Surface Melting and Non­Melting, and Tip­Surface Interactions. In Professor Vu Thien Binh, Professor Nicolas Garcia, and Professor Klause Dransfeld, editors, Nanosources and Ma­ nipulation of Atoms Under High Fields and Temperatures: Applications, number 235 in NATO ASI Series, pages 185-205. Springer Netherlands, 1993.

DOI: 10.1007/978-94-011-1729-6_16

Google Scholar

[47] H. Hakkinen and M. Manninen. Computer­Simulation of Disordering and Premelting of Low­Index Faces of Copper. Physical Review B, 46(3):1725-1742, July 1992. WOS:A1992JE62600058.

DOI: 10.1103/physrevb.46.1725

Google Scholar

[48] H. Hakkinen and Uzi Landman. Superheating, melting, and annealing of copper surfaces. Phys­ ical Review Letters, 71(7):1023-1026, August (1993).

DOI: 10.1103/physrevlett.71.1023

Google Scholar

[49] Furio Ercolessi, Francesco D. Di Tolla, and Erio Tosatti. The microscopic origin of nonmelting and surface overheating at close­packed metal surfaces. Surface Review and Letters, 04(05):833- 837, October (1997).

DOI: 10.1142/s0218625x97000869

Google Scholar

[50] Di Tolla, Francesco D. Interplay of Melting, Wetting, Overheating and Faceting on Metal Sur­ faces: Theory and Simulation. PhD thesis, SISSA­ISAS, Trieste, (1995).

DOI: 10.1016/s0039-6028(96)01435-5

Google Scholar

[51] Yaroslav G. Chushak and Lawrence S. Bartell. Melting and Freezing of Gold Nanoclusters. The Journal of Physical Chemistry B, 105(47):11605-11614, November (2001).

DOI: 10.1021/jp0109426

Google Scholar

[52] Furio Ercolessi, Wanda Andreoni, and Erio Tosatti. Melting of small gold particles: Mechanism and size effects. Physical Review Letters, 66(7):911-914, February (1991).

DOI: 10.1103/physrevlett.66.911

Google Scholar

[53] Daniele Scopece. Sowos: an open­source program for the three­dimensional wulff construction. J. Appl. Cryst., (3):811-816, April.

DOI: 10.1107/s0021889813005426

Google Scholar

[54] J. R. Morris, C. Z. Wang, K. M. Ho, and C. T. Chan. Melting line of aluminum from simulations of coexisting phases. Phys. Rev. B, 49:3109-3115, Feb (1994).

DOI: 10.1103/physrevb.49.3109

Google Scholar