Mass Transport in Nanoalloys Studied by Atomistic Models

Article Preview

Abstract:

The diffusion of atoms in nanoparticles can be studied computationally by Molecular Dynamics simulations, a simulation method which allow to follow the actual trajectories of the diffusing atoms. Here we focus on the simulation of diffusion in metallic nanoparticles, first considering the case of single impurity atoms in matrix clusters, and then on the simulation of the growth in gas phase. We show that diffusion of atoms in nanoparticles can take place by a variety of different mechanisms, which very often involve collective displacements. These collective displacements are facilitated in the vicinity of the cluster surface, which, in small nanoparticles, includes a large portion of the nanoparticle itself.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 12)

Pages:

23-37

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Ferrando, Structure and Properties of Nanoalloys, Frontiers of Nanoscience, Volume 10, El­ sevier, (2016).

Google Scholar

[2] R. Ferrando, J. Jellinek, R. L. Johnston, Nanoalloys: From theory to applications of alloy clusters and nanoparticles, Chem. Rev. (Washington, DC) 108 (2008) 845-910.

DOI: 10.1021/cr040090g

Google Scholar

[3] D. Alloyeau, C. Ricolleau, C. Mottet, T. Oikawa, C. Langlois, Y. Le Bouar, N. Braidy, A. Loiseau, Size and shape effects on the order­disorder phase transition in copt nanoparticles, Nature Mater. 8 (2009) 940-946.

DOI: 10.1038/nmat2574

Google Scholar

[4] F. Baletto, C. Mottet, R. Ferrando, Growth simulations of silver shells on copper and palladium nanoclusters, Phys. Rev. B 66 (2002) 155420.

DOI: 10.1103/physrevb.66.155420

Google Scholar

[5] F. Baletto, C. Mottet, R. Ferrando, Growth of three­shell onionlike bimetallic nanoparticles, Phys. Rev. Lett. 90 (2003) 135504.

DOI: 10.1103/physrevlett.90.135504

Google Scholar

[6] D. Ferrer, A. Torres­Castro, X. Gao, S. Sepúlveda­Guzmán, U. Ortiz­Méndez, M. José­ Yacamán, Three­layer core/shell structure in au−pd bimetallic nanoparticles, Nano Lett. 7 (2007) 1701-1706.

DOI: 10.1021/nl070694a

Google Scholar

[7] C. Langlois, Z. Y. Li, J. Yuan, D. Alloyeau, J. Nelayah, D. Bochicchio, R. Ferrando, C. Ricolleau, Transition from core­shell to janus chemical configuration for bimetallic nanoparticles, Nanoscale 4 (2012) 3381-3388.

DOI: 10.1039/c2nr11954d

Google Scholar

[8] J. Greeley, M. Mavrikakis, Alloy catalysts designed from first principles, Nat. Mater. 3 (2004) 810-815.

DOI: 10.1038/nmat1223

Google Scholar

[9] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Marković, Improved oxygen reduction activity on pt3ni(111) via increased surface site availability, Science 315 (2007) 493-497.

DOI: 10.1126/science.1135941

Google Scholar

[10] J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Towards the computational design of solid catalysts, Nature Chem 1 (2009) 37-46.

DOI: 10.1038/nchem.121

Google Scholar

[11] J. Stöhr, H. C. Siegmann, Magnetism ­ From Fundamentals to Nanoscale Dynamics, Springer, Berlin, (2006).

Google Scholar

[12] P. Andreazza, V. Pierron­Bohnes, F. Tournus, C. Andreazza­Vignolle, V. Dupuis, Structure and order in cobalt /platinum­type nanoalloys: from thin films to supported clusters, Surf. Sci. Rep. 70 (2015) 188-258.

DOI: 10.1016/j.surfrep.2015.02.002

Google Scholar

[13] M. Gaudry, E. Cottancin, M. Pellarin, J. Lermé, L. Arnaud, J. R. Huntzinger, J. L. Vialle, M. Broyer, J. L. Rousset, M. Treilleux, P. Mélinon, Size and composition dependence in the opti­ cal properties of mixed (transition metal­noble metal) embedded clusters, Phys. Rev. B 67 (2003) 155409.

DOI: 10.1103/physrevb.67.155409

Google Scholar

[14] M. Broyer, E. Cottancin, J. Lermé, M. Pellarin, N. Del Fatti, F. Vallée, J. Burgin, C. Guillon, P. Langot, Optical properties and relaxation processes at femtosecond scale of bimetallic clusters, Faraday Discuss. 138 (2008) 137-145.

DOI: 10.1039/b711282n

Google Scholar

[15] A. J. Logsdail, R. L. Johnston, Predicting the optical properties of core-shell and janus segre­ gated au-m nanoparticles (m = ag, pd), J. Phys. Chem. C 116 (2012) 23616-23628.[16] F. Baletto, C. Mottet, R. Ferrando, Reentrant morphology transition in the growth of free silver nanocluters, Phys. Rev. Lett 84 (2000) 5544-5547.

DOI: 10.1103/physrevlett.84.5544

Google Scholar

[17] F. Baletto, C. Mottet, R. Ferrando, Microscopic mechanisms of the growth of metastable silver icosahedra, Phys. Rev. B 63 (2001) 155408.

DOI: 10.1103/physrevb.63.155408

Google Scholar

[18] F. Baletto, R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Rev. Mod. Phys. 77 (2005) 371-423.

DOI: 10.1103/revmodphys.77.371

Google Scholar

[19] D. M. Wells, G. Rossi, R. Ferrando, R. E. Palmer, Metastability of the atomic structures of size­ selected gold nanoparticles, Nanoscale 7 (2015) 6498-6504.

DOI: 10.1039/c4nr05811a

Google Scholar

[20] L. D. Marks, L. Peng, Nanoparticle shape, thermodynamics and kinetics, J. Phys. Condensed Matter 28 (2016) 053001.

DOI: 10.1088/0953-8984/28/5/053001

Google Scholar

[21] H. Yasuda, H. Mori, Spontaneous alloying of zinc atoms into gold clusters and formation of compound clusters, Phys. Rev. Lett. 69 (1992) 3747-3750.

DOI: 10.1103/physrevlett.69.3747

Google Scholar

[22] H. Yasuda, H. Mori, M. Komatsu, K. Takeda, H. Fujita, Insitu observation of spontaneous alloy­ ing in atom clusters, J. Electron Microsc. 41 (1992) 267-269.

Google Scholar

[23] H. Yasuda, H. Mori, Cluster­size dependence of alloying behavior in gold clusters, Z. Phys. D: At. Mol. Clusters 31 (1994) 131-134.

DOI: 10.1007/bf01426588

Google Scholar

[24] H. Yasuda, H. Mori, Spontaneous alloying in nanoparticles in the sb­au system, J. Electron Mi­ crosc. 48 (1999) 1055-1058.

Google Scholar

[25] Y. Shimizu, S. Sawada, K. S. Ikeda, Classical dynamical simulation of spontaneous alloying, Eur. Phys. J. D 4 (1998) 365-372.

Google Scholar

[26] S. Liu, Z. Sun, Q. Liu, L. Wu, Y. Huang, T. Yao, J. Zhang, T. Hu, M. Ge, F. Hu, Z. Xie, G. Pan, S. Wei, Unidirectional thermal diffusion in bimetallic cu@au nanoparticles, ACS Nano 8 (2014) 1886-1892.

DOI: 10.1021/nn4063825

Google Scholar

[27] S. A. Tenney, W. He, J. S. Ratliff, D. R. Mullins, D. A. Chen, Characterization of pt­au and ni­au clusters on tio2(110), Topics Catal. 54 (2011) 42-55.

DOI: 10.1007/s11244-011-9646-5

Google Scholar

[28] P. Lu, M. Chandross, T. J. Boyle, B. G. Clark, P. Vianco, Equilibrium cu­ag nanoalloy structure formation revealed by in situ scanning transmission electron microscopy heating experiments, APL Mater. 2 (2014) 022107.

DOI: 10.1063/1.4866052

Google Scholar

[29] M. Tchaplyguine, T. Andersson, C. Zhang, O. Björneholm, Core­shell structure disclosed in self­ assembled cu­ag nanoalloy particles, J. Chem. Phys. 138 (2013) 104303.

DOI: 10.1063/1.4794045

Google Scholar

[30] T. Momin, A. Bhowmick, Nanoscale alloying: A study in free cu-ag bimetallic clusters, J. Alloy Compounds 559 (2013) 24-33.

DOI: 10.1016/j.jallcom.2013.01.014

Google Scholar

[31] D. Belić, R. L. Chantry, Z. Y. Li, S. A. Brown, Ag­au nanoclusters: Structure and phase segre­ gation, Appl. Phys. Lett. 99 (2011) 171914.

DOI: 10.1063/1.3656244

Google Scholar

[32] F. Yin, Z. W. Wang, R. E. Palmer, Ageing of mass­selected cu/au and au/cu core/shell clusters probed with atomic resolution, J. Exper. Nanosci. 7 (2012) 703-710.

DOI: 10.1080/17458080.2012.710856

Google Scholar

[33] T. J. Toai, G. Rossi, R. Ferrando, Global optimisation and growth simulation of aucu clusters, Faraday Discuss 138 (2008) 49.[34] G. Rossi, G. Schiappelli, R. Ferrando, Formation pathways and energetic stability of icosahedral agshellcocore nanoclusters, J. Comput. Theor. Nanosci. 6 (2009) 841.

DOI: 10.1039/b707813g

Google Scholar

[35] I. Parsina, F. Baletto, Tailoring the structural motif of agco nanoalloys: Core/shell versus janus­ like, J. Phys. Chem. C 114 (2010) 1504-1511.

DOI: 10.1021/jp909773x

Google Scholar

[36] R. L. Chantry, I. Atanasov, W. Siriwatcharapiboon, B. P. Khanal, E. R. Zubarev, S. L. Horswell, R. L. Johnston, Z. Y. Li, An atomistic view of the interfacial structures of aurh and aupd nanorods, Nanoscale 5 (16) (2013) 7452-7457.

DOI: 10.1039/c3nr02560h

Google Scholar

[37] J. Yang, W. Hu, Y. Wu, X. Dai, Diffusion and growth of nickel, iron and magnesium adatoms on the aluminum truncated octahedron: a molecular dynamics simulation, Surf. Sci. 606 (2012) 971-980.

DOI: 10.1016/j.susc.2012.02.017

Google Scholar

[38] J. Tang, J. Yang, A dynamical atomic simulation for the ni/al wulff nanoparticle, Thin Solid Films 536 (2013) 318-322.

DOI: 10.1016/j.tsf.2013.03.055

Google Scholar

[39] J. Tang, J. Yang, Y. Yu, Impact growth structures of nanoalloys: Atomistic simulation on an im­ miscible cu­ag system, Physica Status Solidi B 252 (2015) 365-370.

DOI: 10.1002/pssb.201451284

Google Scholar

[40] S. A. Paz, E. P. M. Leiva, J. Jellinek, M. M. Mariscal, Properties of rotating nanoalloys formed by cluster collision: A computer simulation study, J. Chem. Phys. 134 (2012) 094701.

DOI: 10.1063/1.3556530

Google Scholar

[41] H. Y. Kim, S. H. Lee, H. G. Kim, J. H. Ryu, H. M. Lee, Molecular dynamic simulation of coa­ lescence between silver and palladium clusters, Mater. Trans. 48 (2007) 455-459.

DOI: 10.2320/matertrans.48.455

Google Scholar

[42] H. Y. Kim, H. G. Kim, J. H. Ryu, H. M. Lee, Preferential segregation of pd atoms in the ag­pd bimetallic cluster: Density functional theory and molecular dynamics simulation, Phys. Rev. B 75 (2007) 212105.

DOI: 10.1103/physrevb.75.212105

Google Scholar

[43] T. Niiyama, S. Sawada, K. S. Ikeda, Y. Shimizu, A numerical study upon the atomistic mecha­ nisms of rapid diffusion in nanoclusters, Chem. Phys. Lett. 503 (2011) 252-255.

DOI: 10.1016/j.cplett.2011.01.004

Google Scholar

[44] P. Lu, M. Chandross, T. J. Boyle, B. G. Clark, P. Vianco, Energetics of the formation of cu-ag core-shell nanoparticles, Modelling Simul. Mater. Sci. Eng. 22 (2014) 075012.

DOI: 10.1088/0965-0393/22/7/075012

Google Scholar

[45] F. Berthier, A. Tadjine, B. Legrand, Ageing of out­of­equilibrium nanoalloys by a kinetic mean­ field approach, Phys. Chem. Chem. Phys. 17 (2015) 28193-28199.

DOI: 10.1039/c5cp00600g

Google Scholar

[46] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, (1987).

Google Scholar

[47] D. Frenkel, B. Smit, Understanding Molecular Simulation from Algorithms to Applications, Academic Press, (2002).

Google Scholar

[48] E. Panizon, R. Ferrando, Solid­solid transitions in pd­pt nanoalloys, Phys. Rev. B 92 (2015) 205417.

Google Scholar

[49] J. Zhao, E. Baibuz, J. Vernieres, P. Grammatikopoulos, V. Jansson, M. Nagel, S. Steinhauer, M. Sowwan, A. Kuronen, K. Nordlund, F. Djurabekova, Formation mechanism of fe nanocubes by magnetron sputtering inert gas condensation, ACS Nano 10 (4) (2016) 4684-4694.

DOI: 10.1021/acsnano.6b01024

Google Scholar

[50] D. J. Wales, Energy Landscapes, Cambridge University Press, (2003).

Google Scholar

[51] A. Rapallo, J. A. Olmos­Asar, O. A. Oviedo, M. Luduena, R. Ferrando, M. M. Mariscal, Ther­ mal properties of co/au nanoalloys and comparison of different computer simulation techniques, J. Phys. Chem. C 116 (2012) 17210-17218.[52] C. Langlois, D. Alloyeau, Y. Le Bouar, A. Loiseau, T. Oikawa, C. Mottet, C. Ricolleau, Growth and structural properties of cuag and copt bimetallic nanoparticles, Faraday Disc. 138 (2008) 375-391.

DOI: 10.1039/b705912b

Google Scholar

[53] D. Bochicchio, R. Ferrando, Morphological instability of core­shell metallic nanoparticles, Phys. Rev. B 87 (2013) 165435.

Google Scholar

[54] F. Cyrot­Lackmann, F. Ducastelle, Binding energies of transition­metal atoms adsorbed on a transition metal, Phys. Rev. B 4 (1971) 2406-2412.

DOI: 10.1103/physrevb.4.2406

Google Scholar

[55] R. P. Gupta, Lattice relaxation at a metal surface, Phys. Rev. B 23 (1981) 6265.

Google Scholar

[56] F. Cleri, V. Rosato, Tight­binding potentials for transition metals and alloys, Phys. Rev. B 48 (1993) 22.

Google Scholar

[57] D. Bochicchio, R. Ferrando, Size­dependent transition to high­symmetry chiral structures in agcu, agco, agni, and auni nanoalloys, Nano Lett. 10 (2010) 4211-4216.

DOI: 10.1021/nl102588p

Google Scholar

[58] K. Laasonen, E. Panizon, D. Bochicchio, R. Ferrando, Competition between icosahedral motifs in agcu, agni, and agco nanoalloys: A combined atomistic­dft study, J. Phys. Chem. C 117 (2013) 26405-26413.

DOI: 10.1021/jp410379u

Google Scholar

[59] C. Mottet, G. Tréglia, B. Legrand, Structures of a ag monolayer deposited on cu(111), cu(100), and cu(110) substrates: An extended tight­binding quenched­molecular­dynamics study, Phys. Rev. B 46 (1992) 16018.

DOI: 10.1103/physrevb.46.16018

Google Scholar

[60] C. Mottet, G. Tréglia, B. Legrand, New magic numbers in metallic clusters: an unexpected metal dependence, Surf. Sci. 383 (1997) L719.

DOI: 10.1016/s0039-6028(97)00226-4

Google Scholar

[61] C. Mottet, G. Rossi, F. Baletto, R. Ferrando, Single impurity effect on the melting of nanoclus­ ters, Phys. Rev. Lett. 95 (2005) 035501.

DOI: 10.1103/physrevlett.95.035501

Google Scholar

[62] E. Panizon, R. Ferrando, Strain­induced restructuring of the surface in core@shell nanoalloys, Nanoscale 8 (2016) 15911-15919.

DOI: 10.1039/c6nr03560d

Google Scholar

[63] F. Baletto, C. Mottet, R. Ferrando, Molecular dynamics simulations of surface diffusion and growth on silver and gold clusters, Surf. Sci. 446 (2000) 31-45.

DOI: 10.1016/s0039-6028(99)01058-4

Google Scholar

[64] E. Panizon, D. Bochicchio, G. Rossi, R. Ferrando, Tuning the structure of nanoparticles by small concentrations of impurities, Chem. Mater 26 (2014) 3354-3356.

DOI: 10.1021/cm501001f

Google Scholar