[1]
R. Ferrando, Structure and Properties of Nanoalloys, Frontiers of Nanoscience, Volume 10, El sevier, (2016).
Google Scholar
[2]
R. Ferrando, J. Jellinek, R. L. Johnston, Nanoalloys: From theory to applications of alloy clusters and nanoparticles, Chem. Rev. (Washington, DC) 108 (2008) 845-910.
DOI: 10.1021/cr040090g
Google Scholar
[3]
D. Alloyeau, C. Ricolleau, C. Mottet, T. Oikawa, C. Langlois, Y. Le Bouar, N. Braidy, A. Loiseau, Size and shape effects on the orderdisorder phase transition in copt nanoparticles, Nature Mater. 8 (2009) 940-946.
DOI: 10.1038/nmat2574
Google Scholar
[4]
F. Baletto, C. Mottet, R. Ferrando, Growth simulations of silver shells on copper and palladium nanoclusters, Phys. Rev. B 66 (2002) 155420.
DOI: 10.1103/physrevb.66.155420
Google Scholar
[5]
F. Baletto, C. Mottet, R. Ferrando, Growth of threeshell onionlike bimetallic nanoparticles, Phys. Rev. Lett. 90 (2003) 135504.
DOI: 10.1103/physrevlett.90.135504
Google Scholar
[6]
D. Ferrer, A. TorresCastro, X. Gao, S. SepúlvedaGuzmán, U. OrtizMéndez, M. José Yacamán, Threelayer core/shell structure in au−pd bimetallic nanoparticles, Nano Lett. 7 (2007) 1701-1706.
DOI: 10.1021/nl070694a
Google Scholar
[7]
C. Langlois, Z. Y. Li, J. Yuan, D. Alloyeau, J. Nelayah, D. Bochicchio, R. Ferrando, C. Ricolleau, Transition from coreshell to janus chemical configuration for bimetallic nanoparticles, Nanoscale 4 (2012) 3381-3388.
DOI: 10.1039/c2nr11954d
Google Scholar
[8]
J. Greeley, M. Mavrikakis, Alloy catalysts designed from first principles, Nat. Mater. 3 (2004) 810-815.
DOI: 10.1038/nmat1223
Google Scholar
[9]
V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Marković, Improved oxygen reduction activity on pt3ni(111) via increased surface site availability, Science 315 (2007) 493-497.
DOI: 10.1126/science.1135941
Google Scholar
[10]
J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Towards the computational design of solid catalysts, Nature Chem 1 (2009) 37-46.
DOI: 10.1038/nchem.121
Google Scholar
[11]
J. Stöhr, H. C. Siegmann, Magnetism From Fundamentals to Nanoscale Dynamics, Springer, Berlin, (2006).
Google Scholar
[12]
P. Andreazza, V. PierronBohnes, F. Tournus, C. AndreazzaVignolle, V. Dupuis, Structure and order in cobalt /platinumtype nanoalloys: from thin films to supported clusters, Surf. Sci. Rep. 70 (2015) 188-258.
DOI: 10.1016/j.surfrep.2015.02.002
Google Scholar
[13]
M. Gaudry, E. Cottancin, M. Pellarin, J. Lermé, L. Arnaud, J. R. Huntzinger, J. L. Vialle, M. Broyer, J. L. Rousset, M. Treilleux, P. Mélinon, Size and composition dependence in the opti cal properties of mixed (transition metalnoble metal) embedded clusters, Phys. Rev. B 67 (2003) 155409.
DOI: 10.1103/physrevb.67.155409
Google Scholar
[14]
M. Broyer, E. Cottancin, J. Lermé, M. Pellarin, N. Del Fatti, F. Vallée, J. Burgin, C. Guillon, P. Langot, Optical properties and relaxation processes at femtosecond scale of bimetallic clusters, Faraday Discuss. 138 (2008) 137-145.
DOI: 10.1039/b711282n
Google Scholar
[15]
A. J. Logsdail, R. L. Johnston, Predicting the optical properties of core-shell and janus segre gated au-m nanoparticles (m = ag, pd), J. Phys. Chem. C 116 (2012) 23616-23628.[16] F. Baletto, C. Mottet, R. Ferrando, Reentrant morphology transition in the growth of free silver nanocluters, Phys. Rev. Lett 84 (2000) 5544-5547.
DOI: 10.1103/physrevlett.84.5544
Google Scholar
[17]
F. Baletto, C. Mottet, R. Ferrando, Microscopic mechanisms of the growth of metastable silver icosahedra, Phys. Rev. B 63 (2001) 155408.
DOI: 10.1103/physrevb.63.155408
Google Scholar
[18]
F. Baletto, R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Rev. Mod. Phys. 77 (2005) 371-423.
DOI: 10.1103/revmodphys.77.371
Google Scholar
[19]
D. M. Wells, G. Rossi, R. Ferrando, R. E. Palmer, Metastability of the atomic structures of size selected gold nanoparticles, Nanoscale 7 (2015) 6498-6504.
DOI: 10.1039/c4nr05811a
Google Scholar
[20]
L. D. Marks, L. Peng, Nanoparticle shape, thermodynamics and kinetics, J. Phys. Condensed Matter 28 (2016) 053001.
DOI: 10.1088/0953-8984/28/5/053001
Google Scholar
[21]
H. Yasuda, H. Mori, Spontaneous alloying of zinc atoms into gold clusters and formation of compound clusters, Phys. Rev. Lett. 69 (1992) 3747-3750.
DOI: 10.1103/physrevlett.69.3747
Google Scholar
[22]
H. Yasuda, H. Mori, M. Komatsu, K. Takeda, H. Fujita, Insitu observation of spontaneous alloy ing in atom clusters, J. Electron Microsc. 41 (1992) 267-269.
Google Scholar
[23]
H. Yasuda, H. Mori, Clustersize dependence of alloying behavior in gold clusters, Z. Phys. D: At. Mol. Clusters 31 (1994) 131-134.
DOI: 10.1007/bf01426588
Google Scholar
[24]
H. Yasuda, H. Mori, Spontaneous alloying in nanoparticles in the sbau system, J. Electron Mi crosc. 48 (1999) 1055-1058.
Google Scholar
[25]
Y. Shimizu, S. Sawada, K. S. Ikeda, Classical dynamical simulation of spontaneous alloying, Eur. Phys. J. D 4 (1998) 365-372.
Google Scholar
[26]
S. Liu, Z. Sun, Q. Liu, L. Wu, Y. Huang, T. Yao, J. Zhang, T. Hu, M. Ge, F. Hu, Z. Xie, G. Pan, S. Wei, Unidirectional thermal diffusion in bimetallic cu@au nanoparticles, ACS Nano 8 (2014) 1886-1892.
DOI: 10.1021/nn4063825
Google Scholar
[27]
S. A. Tenney, W. He, J. S. Ratliff, D. R. Mullins, D. A. Chen, Characterization of ptau and niau clusters on tio2(110), Topics Catal. 54 (2011) 42-55.
DOI: 10.1007/s11244-011-9646-5
Google Scholar
[28]
P. Lu, M. Chandross, T. J. Boyle, B. G. Clark, P. Vianco, Equilibrium cuag nanoalloy structure formation revealed by in situ scanning transmission electron microscopy heating experiments, APL Mater. 2 (2014) 022107.
DOI: 10.1063/1.4866052
Google Scholar
[29]
M. Tchaplyguine, T. Andersson, C. Zhang, O. Björneholm, Coreshell structure disclosed in self assembled cuag nanoalloy particles, J. Chem. Phys. 138 (2013) 104303.
DOI: 10.1063/1.4794045
Google Scholar
[30]
T. Momin, A. Bhowmick, Nanoscale alloying: A study in free cu-ag bimetallic clusters, J. Alloy Compounds 559 (2013) 24-33.
DOI: 10.1016/j.jallcom.2013.01.014
Google Scholar
[31]
D. Belić, R. L. Chantry, Z. Y. Li, S. A. Brown, Agau nanoclusters: Structure and phase segre gation, Appl. Phys. Lett. 99 (2011) 171914.
DOI: 10.1063/1.3656244
Google Scholar
[32]
F. Yin, Z. W. Wang, R. E. Palmer, Ageing of massselected cu/au and au/cu core/shell clusters probed with atomic resolution, J. Exper. Nanosci. 7 (2012) 703-710.
DOI: 10.1080/17458080.2012.710856
Google Scholar
[33]
T. J. Toai, G. Rossi, R. Ferrando, Global optimisation and growth simulation of aucu clusters, Faraday Discuss 138 (2008) 49.[34] G. Rossi, G. Schiappelli, R. Ferrando, Formation pathways and energetic stability of icosahedral agshellcocore nanoclusters, J. Comput. Theor. Nanosci. 6 (2009) 841.
DOI: 10.1039/b707813g
Google Scholar
[35]
I. Parsina, F. Baletto, Tailoring the structural motif of agco nanoalloys: Core/shell versus janus like, J. Phys. Chem. C 114 (2010) 1504-1511.
DOI: 10.1021/jp909773x
Google Scholar
[36]
R. L. Chantry, I. Atanasov, W. Siriwatcharapiboon, B. P. Khanal, E. R. Zubarev, S. L. Horswell, R. L. Johnston, Z. Y. Li, An atomistic view of the interfacial structures of aurh and aupd nanorods, Nanoscale 5 (16) (2013) 7452-7457.
DOI: 10.1039/c3nr02560h
Google Scholar
[37]
J. Yang, W. Hu, Y. Wu, X. Dai, Diffusion and growth of nickel, iron and magnesium adatoms on the aluminum truncated octahedron: a molecular dynamics simulation, Surf. Sci. 606 (2012) 971-980.
DOI: 10.1016/j.susc.2012.02.017
Google Scholar
[38]
J. Tang, J. Yang, A dynamical atomic simulation for the ni/al wulff nanoparticle, Thin Solid Films 536 (2013) 318-322.
DOI: 10.1016/j.tsf.2013.03.055
Google Scholar
[39]
J. Tang, J. Yang, Y. Yu, Impact growth structures of nanoalloys: Atomistic simulation on an im miscible cuag system, Physica Status Solidi B 252 (2015) 365-370.
DOI: 10.1002/pssb.201451284
Google Scholar
[40]
S. A. Paz, E. P. M. Leiva, J. Jellinek, M. M. Mariscal, Properties of rotating nanoalloys formed by cluster collision: A computer simulation study, J. Chem. Phys. 134 (2012) 094701.
DOI: 10.1063/1.3556530
Google Scholar
[41]
H. Y. Kim, S. H. Lee, H. G. Kim, J. H. Ryu, H. M. Lee, Molecular dynamic simulation of coa lescence between silver and palladium clusters, Mater. Trans. 48 (2007) 455-459.
DOI: 10.2320/matertrans.48.455
Google Scholar
[42]
H. Y. Kim, H. G. Kim, J. H. Ryu, H. M. Lee, Preferential segregation of pd atoms in the agpd bimetallic cluster: Density functional theory and molecular dynamics simulation, Phys. Rev. B 75 (2007) 212105.
DOI: 10.1103/physrevb.75.212105
Google Scholar
[43]
T. Niiyama, S. Sawada, K. S. Ikeda, Y. Shimizu, A numerical study upon the atomistic mecha nisms of rapid diffusion in nanoclusters, Chem. Phys. Lett. 503 (2011) 252-255.
DOI: 10.1016/j.cplett.2011.01.004
Google Scholar
[44]
P. Lu, M. Chandross, T. J. Boyle, B. G. Clark, P. Vianco, Energetics of the formation of cu-ag core-shell nanoparticles, Modelling Simul. Mater. Sci. Eng. 22 (2014) 075012.
DOI: 10.1088/0965-0393/22/7/075012
Google Scholar
[45]
F. Berthier, A. Tadjine, B. Legrand, Ageing of outofequilibrium nanoalloys by a kinetic mean field approach, Phys. Chem. Chem. Phys. 17 (2015) 28193-28199.
DOI: 10.1039/c5cp00600g
Google Scholar
[46]
M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, (1987).
Google Scholar
[47]
D. Frenkel, B. Smit, Understanding Molecular Simulation from Algorithms to Applications, Academic Press, (2002).
Google Scholar
[48]
E. Panizon, R. Ferrando, Solidsolid transitions in pdpt nanoalloys, Phys. Rev. B 92 (2015) 205417.
Google Scholar
[49]
J. Zhao, E. Baibuz, J. Vernieres, P. Grammatikopoulos, V. Jansson, M. Nagel, S. Steinhauer, M. Sowwan, A. Kuronen, K. Nordlund, F. Djurabekova, Formation mechanism of fe nanocubes by magnetron sputtering inert gas condensation, ACS Nano 10 (4) (2016) 4684-4694.
DOI: 10.1021/acsnano.6b01024
Google Scholar
[50]
D. J. Wales, Energy Landscapes, Cambridge University Press, (2003).
Google Scholar
[51]
A. Rapallo, J. A. OlmosAsar, O. A. Oviedo, M. Luduena, R. Ferrando, M. M. Mariscal, Ther mal properties of co/au nanoalloys and comparison of different computer simulation techniques, J. Phys. Chem. C 116 (2012) 17210-17218.[52] C. Langlois, D. Alloyeau, Y. Le Bouar, A. Loiseau, T. Oikawa, C. Mottet, C. Ricolleau, Growth and structural properties of cuag and copt bimetallic nanoparticles, Faraday Disc. 138 (2008) 375-391.
DOI: 10.1039/b705912b
Google Scholar
[53]
D. Bochicchio, R. Ferrando, Morphological instability of coreshell metallic nanoparticles, Phys. Rev. B 87 (2013) 165435.
Google Scholar
[54]
F. CyrotLackmann, F. Ducastelle, Binding energies of transitionmetal atoms adsorbed on a transition metal, Phys. Rev. B 4 (1971) 2406-2412.
DOI: 10.1103/physrevb.4.2406
Google Scholar
[55]
R. P. Gupta, Lattice relaxation at a metal surface, Phys. Rev. B 23 (1981) 6265.
Google Scholar
[56]
F. Cleri, V. Rosato, Tightbinding potentials for transition metals and alloys, Phys. Rev. B 48 (1993) 22.
Google Scholar
[57]
D. Bochicchio, R. Ferrando, Sizedependent transition to highsymmetry chiral structures in agcu, agco, agni, and auni nanoalloys, Nano Lett. 10 (2010) 4211-4216.
DOI: 10.1021/nl102588p
Google Scholar
[58]
K. Laasonen, E. Panizon, D. Bochicchio, R. Ferrando, Competition between icosahedral motifs in agcu, agni, and agco nanoalloys: A combined atomisticdft study, J. Phys. Chem. C 117 (2013) 26405-26413.
DOI: 10.1021/jp410379u
Google Scholar
[59]
C. Mottet, G. Tréglia, B. Legrand, Structures of a ag monolayer deposited on cu(111), cu(100), and cu(110) substrates: An extended tightbinding quenchedmoleculardynamics study, Phys. Rev. B 46 (1992) 16018.
DOI: 10.1103/physrevb.46.16018
Google Scholar
[60]
C. Mottet, G. Tréglia, B. Legrand, New magic numbers in metallic clusters: an unexpected metal dependence, Surf. Sci. 383 (1997) L719.
DOI: 10.1016/s0039-6028(97)00226-4
Google Scholar
[61]
C. Mottet, G. Rossi, F. Baletto, R. Ferrando, Single impurity effect on the melting of nanoclus ters, Phys. Rev. Lett. 95 (2005) 035501.
DOI: 10.1103/physrevlett.95.035501
Google Scholar
[62]
E. Panizon, R. Ferrando, Straininduced restructuring of the surface in core@shell nanoalloys, Nanoscale 8 (2016) 15911-15919.
DOI: 10.1039/c6nr03560d
Google Scholar
[63]
F. Baletto, C. Mottet, R. Ferrando, Molecular dynamics simulations of surface diffusion and growth on silver and gold clusters, Surf. Sci. 446 (2000) 31-45.
DOI: 10.1016/s0039-6028(99)01058-4
Google Scholar
[64]
E. Panizon, D. Bochicchio, G. Rossi, R. Ferrando, Tuning the structure of nanoparticles by small concentrations of impurities, Chem. Mater 26 (2014) 3354-3356.
DOI: 10.1021/cm501001f
Google Scholar