Smart Materials - Theory and Applications

Article Preview

Abstract:

Smart materials are a class of materials characterized by having a different behavior due to external stimulation, which can be mechanic, thermal, electric, or magnetic. This chapter approaches the different types of smart materials and their classification according to the material’s nature (fluid, ceramic, polymeric and metallic). Emphasis is given to the theoretical study of the metallic materials with shape memory, presenting the fundamentals, crystallographic study and the mathematical methods of phase transformation. Due to these metallic material’s unique features, shape memory effect and super elasticity, the usage in the production of composite structures has gained space. Such materials present several advantages if compared to traditional composites being subject of research for several industrial applications

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 14)

Pages:

107-127

Citation:

Online since:

December 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Hage Jr. Polymers: Science and Technology. April/June. 1998. (In Portuguese).

Google Scholar

[2] M.V. Gandhi, B.S. Thompson. Smart Materials and Structures. Chapman & Hall, (1992).

Google Scholar

[3] J.S. N Paine, C.A. Rogers, R. A Smith. Journal of Intelligent Material Systems and Structures. 6, 2 (1995). p.210.

Google Scholar

[4] B. Liu, G. Dui, S. Yang. European Journal of Mechanics – A/Solids. 40 (2013). p.139.

Google Scholar

[5] A. Kaushal, A. Vardhan, RSS. Rawat. Journal of Mechanical and Civil Engineering. 13, 3 (2016). p.10.

Google Scholar

[6] C.A.X. Ramos. Smart Materials Composite. Doctor Theses. Science and Engineering, Porto Engineering Faculty, Porto, Portugal(2006). (In Portuguese).

Google Scholar

[7] W.G. Drossel, H. Kunze, A. Bucht, L. Weisheit, K. Pagel. Procedia CIRP. 36 (2015). p.211.

DOI: 10.1016/j.procir.2015.01.055

Google Scholar

[8] B. López-Walle, E. López-Cuellar, E. Reyes-Melo, O. Lomas-González, W.B. Castro. Actuators. 4 (2015). p.301.

DOI: 10.3390/act4040301

Google Scholar

[9] A.G. Olabi, A. Grunwald. Materials and Design. 28 (2007). p.2658.

Google Scholar

[10] J.A. Gallego-Juarez. Journal of Physics E: Scientific Instruments. 22 (1989). p.804.

Google Scholar

[11] F. ElFeninat, G. Laroche, M. Fiset, D. Montovani. Advanced Engineering Materials. 4, 3 (2002). p.91.

Google Scholar

[12] W.J. Buehler, F.E. Wang. Ocean Engineering. 1 (1968). p.105.

Google Scholar

[13] D. Ratna. Journal of Materials Science. 43, 1 (2008). p.254.

Google Scholar

[14] B.M. Lacava. Synthesis of magnetic fluid based on maghemite for the production of magnetic nanocapsules of bovine albumin. Master Theses. Chemical Institute, Brasilia University. Brasilia-DF, Brazil (2009). (In Portuguese).

Google Scholar

[15] C. Sarkar, H. Hirani. Defence Science Journal. 63, 4 (2013). p.408.

Google Scholar

[16] A.G. Olabi, A. Grunwald. Materials and Design. 28 (2007). p.2658.

Google Scholar

[17] B.K. Kumbhar, S.R. Patil, S.M. Sawant. Engineering Science and Technology, 18 (2015). p.432.

Google Scholar

[18] B.G.C. Silva. Preparation and characterization of magnetic fluids of maghemite functionalized with the amino acid L-Lysine and dextran to carry plasmids. Master Theses. Chemical Institute. Goias Federal University, Goiania-GO, Brazil (2016).

Google Scholar

[19] R. Ingale, A. Patel, A. Mandal. Sensors and Actuators A: Physical. 262 (2017). p.46.

Google Scholar

[20] N. Pérez, M.A.B. Andrade, F. Buiochi, J.C. Adamowski. IEEE Transactions on ultrasonics, ferroelectrics and frequency control. 57, 12 (2010). p.2772.

DOI: 10.1109/tuffc.2010.1751

Google Scholar

[21] F. Pilate, A. Toncheva, P. Dubois, J.M. Raquez. European Polymer Journal. 80 (2016). p.268.

Google Scholar

[22] T. Xie, Polymer. 52, pp.4985-5000. (2011).

Google Scholar

[23] L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, C. Tang. Materials and Design. 33 (2015). p.577.

Google Scholar

[24] K. Otsuka, X. Ren. Intermetallics. 7, 5 (1999). p.511.

Google Scholar

[25] S.K. Wu, H.C. Lin. Materials Chemistry and Physics. 64, 2 (2000). p.81.

Google Scholar

[26] M.M.S. Nascimento, C.J. Araújo, J.S.R. Neto, A.M.N. Lima. Materials Research. 9, 1 (2006). p.15.

Google Scholar

[27] D.C. Lagoudas, J.G. Boyd. International Journal of Plasticity. 12, 6 (1996). p.805.

Google Scholar

[28] K. Otsuka, C.M. Wayman. Shape Memory Materials. Cambridge University Press. (1998).

Google Scholar

[29] V. Chiaverini. Mechanic Technology: Structures and properties of the metallic alloys. vol. 1, 2ndEdition, McGraw-Hill, São Paulo (1986). (In Portuguese).

Google Scholar

[30] D.C. Lagoudas, D.J. Hartl, P.K. Kumar, L.G. Machado, B. Kiefer, P. Popov, P.B. Entchev, M.A.S. Qidwai. Shape Memory Alloys: Modelling and Engineering Applications. Springer, Texas, (2008).

Google Scholar

[31] A.C.B. Geroldo. Study of SMA of Ni-Tiorthodontic wires in conditions: commercial and after heat treatments. Master Theses. Engineering and Technology of Materials. Pontifical Catholic of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul(2009).

DOI: 10.5152/turkjorthod.2022.20151

Google Scholar

[32] K. Otsuka, X. Ren. Progress in Materials Science. vol. 50, 5 (2005). p.511.

Google Scholar

[33] M.S. Garcia. Experimental analysis of thermomechanical behavior of shape memory alloys. DoctorTheses. Science and Mechanical Engineering. Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro(2015). (In Portuguese).

DOI: 10.24873/j.rpemd.2019.10.459

Google Scholar

[34] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka. Metallurgical Transactions A. 17, 1 (1986), p.115.

Google Scholar

[35] M. Panico, L.C. Brinson. Journal of Mechanics and Physics of Solids. 55, 11 (2007). p.2491.

Google Scholar

[36] C. Cisse, W. Zaki, T.B. Zineb. International Journal of Plasticity. 76 (2016). p.244.

Google Scholar

[37] L.C. Brinson, R. Lammering. International Journal of Solids and Structures. 30, 23 (1993). p.3261.

Google Scholar

[38] F. Falk. Acta Metallurgica. 28, 12 (1980). p.1773.

Google Scholar

[39] R. Ahluwalia, T. Lookman, A. Saxena, R.C. Albers. Acta Materialia. 52 (2004). p.209.

Google Scholar

[40] M. Fabrizio, M. Pecoraro, V. Tibullo. Mechanics Research Communications. 74 (2016). p.20.

Google Scholar

[41] O. Shchyglo, U. Salman, A. Finel. Acta Materialia. 60 (2012). p.6784.

Google Scholar

[42] R.P. Dhote, M. Fabrizio, R.N.V. Melnik, J. ZU. Communications in Nonlinear Science and Numerical Simulation. 18 (2013). p.2549.

DOI: 10.1016/j.cnsns.2013.01.015

Google Scholar

[43] H. She, Y. Liu, B. Wang, D. MA. Computational Mechanics. 52, 4 (2013). p.949.

Google Scholar

[44] D.W. Lee, G. Xu, Y. Cui. Scripta Materialia. 90-91 (2014). p.2.

Google Scholar

[45] O. Kastner, G. Eggeler, W. Weiss, G.J. Ackland. Journal of the Mechanics and Physics of Solids. 59 (2011). p.1888.

Google Scholar

[46] B.J. Alder, T.E. Wainwright. The Journal of Chemical Physics. 31, 2 (1959). p.459.

Google Scholar

[47] W.S. Lai, B.X. Liu. Journal of Physics: Condensed Matter. 12, 5 (2000). p.53.

Google Scholar

[48] R. Mirzaeifar, R. Desroches, A. Yavari. International Journal of Solids and Structures. 48 (2011). p.611.

Google Scholar

[49] F.J. Gil, J.A. Planell. Thermochimica Acta. 327 (1999). p.151.

Google Scholar

[50] P. Popov, D.C. Lagoudas. International Journal of Plasticity. 23, 10/11(2007). pp.1679-1720.

Google Scholar

[51] F. Auricchio, J. Lubliner. International Journal of Solids and Structures. 34, 27 (1997). p.3601.

Google Scholar

[52] W.S. Castilho. Thermomechanical characterization of the hybrid composites with shape memory. Master Theses. Mechatronic Systems, Brasilia University, Brasília-DF, Brazil (2008). (In Portuguese).

Google Scholar

[53] W.D. Callister. Science and Engineering of Materials: An introduction. 5th ed., LTC, (2006).

Google Scholar

[54] F.F. Luz. Comparative analysis of fluid flow in RTM experiments with commercial app. Master Theses. Metallurgical, Materials and Mines Engineering, Federal University of Rio Grande do Sul, Porto Alegre-RS, Brazil (2011). (In Portuguese).

DOI: 10.17138/tgft(2)15-17

Google Scholar

[55] V. Michaud. Scripta Materialia. 50 (2004). p.249.

Google Scholar

[56] M. Sippola, T. Lindroos, T. Brander. Journal of Structural Mechanics. 40, 1 (2007). p.65.

Google Scholar

[57] G. Diodati, S. Ameduri, A. Concilio. Journal of Theoretical and Applied Mechanics. 45, 4 (2007). p.919.

Google Scholar

[58] S. Lacasse, P. Terriault, C. Simoneau, V. Brailovski. Journal of Intelligent Material Systems and Structures. vol. 26, 15 (2015). pp. (2055).

DOI: 10.1177/1045389x14549862

Google Scholar

[59] H. Lei, Z. Wang, B. Zhou, L. Tong, X. Wang. Materials and Design. 40 (2012). p.138.

Google Scholar

[60] S.S. Pulla, H.E. Karaca, Y.C. Lu. Composites Part B. 96 (2016). p.287.

Google Scholar

[61] C.A. Araújo Mota, A.S. Cavalcanti Leal, C.J. Araújo, A.G.B. Lima, S.K.B.M. Silva. Diffusion Foundations. 10 (2017). p.39.

DOI: 10.4028/www.scientific.net/df.10.39

Google Scholar

[62] X. Wang, J. Zhang, Z. Wang, S. Zhou, X. Sun. Materials and Design. 32 (2011). p.3486.

Google Scholar

[63] C. Simoneau, P. Terriault, S. Lacasse, V. Brailovski. Mechanics Based Design of Structures and Machines. 42 (2014). p.174.

DOI: 10.1080/15397734.2013.864246

Google Scholar

[64] Z.T. Vilar, C.J. Araujo, A.G. Santos. Polymers. 26, Especial Issue (2016). p.16.

Google Scholar

[65] M. Meo, F. Marulo, M. Guida, S. Russo. Composite Structures. 95 (2013). p.756.

Google Scholar

[66] Y. Payandeh, F. Meraghni, E. Patoor, A. Eberhardt. Materials and Design. 39 (2012). p.104.

Google Scholar

[67] S. Silva, C. Araújo, T. Andrade, A. Lima, V. Oliveira. International Journal of Multiphysics. 11, 1 (2017). p.71.

Google Scholar

[68] C.A. Rogers. Journal of Acustic Society American. 88, 6 (1990). p.2803.

Google Scholar

[69] C.A. Rogers, Liang, C.R. Fuller. Journal of Acustic Society America. 89, 1 (1990). p.210.

Google Scholar

[70] S.M. Daghash, O.E. Ozbulut. Materials and Design. 111 (2016). p.504.

Google Scholar

[71] M. Barrado, G.A. López, M.L. Nó, J. San Juan. Materials Science and Engineering: A. 521-522 (2009). p.363.

Google Scholar

[72] W. Guo, H. Kato. Materials Latters. 158 (2015). p.1.

Google Scholar

[73] K.T. Lau, W. Tam, X.L. Meng, L. Zhou. Materials Letters. 57 (2002). p.364.

Google Scholar

[74] K. Neuking, A. Abu-Zarifa, G. Eggeler. Materials Science and Engineering A. 481–482 (2008). p.606.

DOI: 10.1016/j.msea.2007.05.118

Google Scholar

[75] S. Rossi, F. Deflorian, A. Pegoretti, D. D'Orazio, S. Gialanella. Surface & Coatings Technology. 202 (2008). p.2214.

Google Scholar

[76] H. Lei, Z. Wang, L. Tong, B. Zhou, J. Fu. Composite Structures. 101 (2013). p.301.

Google Scholar

[77] K.O. Sanusi, O.L. Ayodele, M.T.E. Khan. South African Journal of Science. 110, 7/8 (2014). p.1.

Google Scholar

[78] K.A. Tsoi, R. Stalmans, J. Schrooten, M. Wevers, Y.W. Mai. Materials Science and Engineering A. 342 (2003). p.207.

DOI: 10.1016/s0921-5093(02)00317-9

Google Scholar

[79] Y. Wu, Y. Wu, Y. Wang, W. Zhong. Acta Mechanica Solida Sinica. 20, 4 (2007). p.357.

Google Scholar

[80] S.A. Shabalovskaya. Bio-Medical Materials and Engineering. 6, 4 (1996). p.267.

Google Scholar

[81] Y. Yu, T. Sun, Y. Wang. Procedia Engineering. 141 (2016). p.115.

Google Scholar

[82] L. Petrini, F. Migliavacca. Journal of Metallurgy. 2011 (2011). p.15.

Google Scholar

[83] K.R. Dai, X.K. Hou, Y.H. Sun, R.G. Tang, S.J. Qiu, C. Ni. Injury. 24, 10 (1993). p.651.

Google Scholar

[84] Z. Laster, A.D. Macbean, P.R. Ayliffe, L.C. Newland. British Journal of Oral and Maxillofacil Surgery. 39 (2001). p.324.

Google Scholar

[85] L.G. Machado, M.A. Savi. Brazilian Journal of Medical and Biological Research. 36 (2003). p.683. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand. Acta Biomaterialia. 4, 4 (2008). p.773.

DOI: 10.1016/j.actbio.2008.02.009

Google Scholar

[86] A.R. Pelton, D. Stockel, T.W. Duerig. Materials Science Forum. 327-328 (2000). p.63.

Google Scholar

[87] S. Zhao, L. Gu, S. Froemming. Biomedical Engineering Letters. 1, 4 (2011). p.226.

Google Scholar

[88] P.A. Poletti, C.D. Becker, L. Prina, P. Rujis, H. Bounameaux, D. Didier, P.A. Schneider, F. Terrier. European Radiology. 8, 2 (1998). p.289.

DOI: 10.1007/s003300050382

Google Scholar

[89] D.C. Lagoudas, B.J. Blonk. Smart Materials and Structures. 7, 6 (1998). p.771.

Google Scholar

[90] J.V. Humbeeck. Materials Science and Engineering. vol. 273-275 (1999). p.134.

Google Scholar

[91] T. Wu, M.H. Wu. Proceedings of International Conference on Shape Memory and Superelastic Technologies. Pacific Grove, California. (2000).

Google Scholar

[92] A. Singh, H. Gangwar. International Journal for Research in Applied Science & Engineering Technology. 3, 1 (2015). p.166.

Google Scholar

[93] Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, K. Ishida. Science. 327, 5972 (2010). p.1488.

DOI: 10.1126/science.1183169

Google Scholar

[94] H. Tamai, Y. Kitagawa. Computational Materials Science. 25, 1/2 (2002). p.218.

Google Scholar

[95] J. Morais, P.G. Morais, C. Santos, A.C. Costa, P. Candeias. Procedia Structural Integrity. 5 (2017). p.705.

DOI: 10.1016/j.prostr.2017.07.048

Google Scholar

[96] B. Mas, D. Biggs, I. Vieito, A. Cladera, J. Shaw, F. Martinez-Abella. Construction and Building Materials. 148 (2017). p.307.

DOI: 10.1016/j.conbuildmat.2017.05.041

Google Scholar

[97] K. Wildea, P. Gardonib, Y. Fujinoa. Engineering Structures. 22, 3 (2000). p.222.

Google Scholar

[98] F. Gao, H. Deng, Y. Zhang. Sensors and Actuators A: Physical. 223 (2015). p.40.

Google Scholar

[99] G. Song, Z. Hu, K. Sun, N. Ma, M.J. Economides, S.G. Robello, C. Ehlig- Economides. Journal of Energy Resources Technology. 130, 3 (2008). p.1.

DOI: 10.1115/1.2955558

Google Scholar

[100] G. Song, D. Patil, C. Kocurek, J. Bartos. Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. (2010).

Google Scholar

[101] M.H. Wu, L.M. Schetky. Proceedings of International Conference on Shape Memory and Superelastic Technologies. Pacific Grove, California. (2000).

Google Scholar

[102] J.K. Paik, R.K. Kramer, R.J. Wood. In: International Conference on Intelligent Robots and Systems. San Francisco, USA. (2011).

Google Scholar

[103] J.S. Koh, K.J. Cho. In: International Conference on Robotics and Biomimetics. Guilin, China. (2009).

Google Scholar

[104] A.A. Villanueva, K.B. Joshi, J.B. Blottman, S. Priya. Smart Materials and Structures. 19 (2010). p.1.

Google Scholar

[105] D.A.C. Ceballos. Elastic behavior analysis of adaptive beams based Ni-Ti alloys at below Mf and above Af temperatures. Master Theses. Mechanic Engineering. Brasilia University, Brasilia-DF, Brazil (2012). (In Portuguese).

Google Scholar

[106] G. Zhou, P. Lloyd. Composites Science and Technology. 69 (2009). pp. (2034).

Google Scholar

[107] M. Meo, F. Marulo, M. Guida, S. Russo. Composite Structures. 95 (2013). p.756.

Google Scholar

[108] A. Fortini, A. Suman, M. Merlin, G.L. GaragnanI. Materials and Design. 85 (2015). p.785.

Google Scholar

[109] A.Y.N. Sofla, S.A. Meguid, K.T. Tan, W.K. Yeo. Materials and Design. 31 (2010). p.1284.

Google Scholar

[110] U. Icardi, L. Ferrero. Materials and Design. 30 (2008). p.4200.

Google Scholar

[111] J.R. Poulin, P. Terriault, M. Dubé, P.L. Vachon. Journal of Intelligent Material Systems and Structures. 28, 11 (2017). p.1437.

Google Scholar

[112] C. Biaosong, L. Tong. Materials and Design. 25 (2004). p.663.

Google Scholar

[113] B. Liu, G. Diu, S. Yang. European Journal of Materials A/Solids. 40 (2013). p.139.

Google Scholar

[114] B.S. Shariat, Q. Meng, A.S. Mahmud, Z. Wu, R. Bakhtiari , J. Zhang, F. Motazedian, H. Yang, G. Rio, T. Nam, Y. Liu. Materials and Design. 124 (2017). p.225.

DOI: 10.1016/j.matdes.2017.03.069

Google Scholar

[115] B.S. Shariat, Y. Liu, G. Rio. Journal of Alloys and Compounds. 541 (2012). p.407.

Google Scholar

[116] B.S. Shariat, Y. Liu, G. Rio. Materials and Design. 50 (2013). p.879.

Google Scholar

[117] H. Liu, J. Wang, H.H. Dai. Mechanics of Materials. 112 (2017). p.40.

Google Scholar

[118] L. Xue, G. Dui, B. Liu, L. Xin. International Journal of Engineering Science. 78 (2014). p.103.

Google Scholar