[1]
Z. Acimovic, L. Pavlovic, L. Trumbulovic, L. Andric, M. Stamatovic, Synthesis and characterization of the cordierite ceramics from nonstandard raw materials for application in foundry, Materials Letters, 57 (2003) 2651-2656.
DOI: 10.1016/s0167-577x(02)01345-9
Google Scholar
[2]
B.A. Agana, D. Reeve, J.D. Orbell, Performance optimization of a 5nm TiO2 ceramic membrane with respect to beverage production wastewater, Desalination, 311 (2013) 162-172.
DOI: 10.1016/j.desal.2012.11.027
Google Scholar
[3]
A.L. Ahmad, M.R. Othman, N.F. Idrus, Synthesis and Characterization of Nano-Composite Alumina?Titania Ceramic Membrane for Gas Separation, Journal of the American Ceramic Society, 89 (2006) 3187-3193.
DOI: 10.1111/j.1551-2916.2006.01183.x
Google Scholar
[4]
C. Almandoz, C. Pagliero, A. Ochoa, J. Marchese, Corn syrup clarification by microfiltration with ceramic membranes, Journal of Membrane Science, 363 (2010) 87-95.
DOI: 10.1016/j.memsci.2010.07.017
Google Scholar
[5]
M.C. Almécija, R. Ibáñez, A. Guadix, E.M. Guadix, Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane, Journal of Membrane Science, 288 (2007) 28-35.
DOI: 10.1016/j.memsci.2006.10.021
Google Scholar
[6]
U. Aust, S. Benfer, M. Dietze, A. Rost, G. Tomandl, Development of microporous ceramic membranes in the system TiO2/ZrO2, Journal of Membrane Science, 281 (2006) 463-471.
DOI: 10.1016/j.memsci.2006.04.016
Google Scholar
[7]
S. Barredo-Damas, M.I. Alcaina-Miranda, A. Bes-Piá, M.I. Iborra-Clar, A. Iborra-Clar, J.A. Mendoza-Roca, Ceramic membrane behavior in textile wastewater ultrafiltration, Desalination, 250 (2010) 623-628.
DOI: 10.1016/j.desal.2009.09.037
Google Scholar
[8]
S. Baumann, W.A. Meulenberg, H.P. Buchkremer, Manufacturing strategies for asymmetric ceramic membranes for efficient separation of oxygen from air, Journal of the European Ceramic Society, 33 (2013) 1251-1261.
DOI: 10.1016/j.jeurceramsoc.2012.12.005
Google Scholar
[9]
J.M. Benito, A. Conesa, F. Rubio, M.A. Rodríguez, Preparation and characterization of tubular ceramic membranes for treatment of oil emulsions, Journal of the European Ceramic Society, 25 (2005) 1895-(1903).
DOI: 10.1016/j.jeurceramsoc.2004.06.016
Google Scholar
[10]
P. Bhattacharya, S. Dutta, S. Ghosh, S. Vedajnananda, S. Bandyopadhyay, Crossflow microfiltration using ceramic membrane for treatment of sulphur black effluent from garment processing industry, Desalination, 261 (2010) 67-72.
DOI: 10.1016/j.desal.2010.05.029
Google Scholar
[11]
Y. Chang, Z. Ling, Y. Liu, X. Hu, Y. Li, A simple method for fabrication of highly ordered porous α-alumina ceramic membranes, Journal of Materials Chemistry, 22 (2012) 7445.
DOI: 10.1039/c2jm15279g
Google Scholar
[12]
W. Chen, Y. Miyamoto, Fabrication of porous silicon carbide ceramics with high porosity and high strength, Journal of the European Ceramic Society, 34 (2014) 837-840.
DOI: 10.1016/j.jeurceramsoc.2013.10.008
Google Scholar
[13]
V.V. Cordeiro, M.C. da Silva, H.L. Lira, N.L. de Freitas, A.C.F. de Melo Costa, Porous Anisotropic Alumina Ceramic Membrane: Preparation and Characterization, Materials Science Forum, 727-728 (2012) 1485-1489.
DOI: 10.4028/www.scientific.net/msf.727-728.1485
Google Scholar
[14]
M.C. da Silva, F.N. da Silva, H. de Lucena Lira, N.L. de Freitas, Ceramic Membrane Made of Alumina Synthesized by Pechini Method for Application in Microfiltration Processes, Materials Science Forum, 820 (2015) 79-83.
DOI: 10.4028/www.scientific.net/msf.820.79
Google Scholar
[15]
M.C.S. Gomes, N.C. Pereira, S.T.D. d. Barros, Separation of biodiesel and glycerol using ceramic membranes, Journal of Membrane Science, 352 (2010) 271-276.
DOI: 10.1016/j.memsci.2010.02.030
Google Scholar
[16]
M. Lee, Z. Wu, K. Li, 2 - Advances in ceramic membranes for water treatment, in: Advances in Membrane Technologies for Water Treatment, Woodhead Publishing, Oxford, 2015, pp.43-82.
DOI: 10.1016/b978-1-78242-121-4.00002-2
Google Scholar
[17]
T. Tsuru, Nano/subnano-tuning of porous ceramic membranes for molecular separation, Journal of Sol-Gel Science and Technology, 46 (2008) 349-361.
DOI: 10.1007/s10971-008-1712-5
Google Scholar
[18]
M.C. Duke, S. Mee, J.C. da Costa, Performance of porous inorganic membranes in non-osmotic desalination, Water Res, 41 (2007) 3998-4004.
DOI: 10.1016/j.watres.2007.05.028
Google Scholar
[19]
J. Kim, B. Van der Bruggen, The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment, Environ Pollut, 158 (2010) 2335-2349.
DOI: 10.1016/j.envpol.2010.03.024
Google Scholar
[20]
T. Tsuru, T. Sudou, S. Kawahara, T. Yoshioka, M. Asaeda, Permeation of Liquids through Inorganic Nanofiltration Membranes, J Colloid Interface Sci, 228 (2000) 292-296.
DOI: 10.1006/jcis.2000.6955
Google Scholar
[21]
I. de Oliveira Guimarães, H.L. Lira, S.K. da Silva, S.L. Dias, R. d.C. de Oliveira Lima, Alumina Residue Characterization to Produce Tubular Ceramic Membranes, Materials Science Forum, 727-728 (2012) 1508-1513.
DOI: 10.4028/www.scientific.net/msf.727-728.1508
Google Scholar
[22]
R. d.C. de Oliveira Lima, I. de Oliveira Guimarães, H.L. Lira, G. de Araújo Neves, C.D. da Silva, M.C. da Silva Farias, Development of Ultrafiltration Tubular Ceramic Membrane Using in their Composition Granite Residue, Materials Science Forum, 727-728 (2012).
DOI: 10.4028/www.scientific.net/msf.727-728.652
Google Scholar
[23]
R.C.O. Lima, H.L. Lira, G.A. Neves, M.C. Silva, K.B. França, Study of the Influence of Granite Residue in Different Compositions to Prepare Ceramic Membranes, Materials Science Forum, 798-799 (2014) 542-547.
DOI: 10.4028/www.scientific.net/msf.798-799.542
Google Scholar
[24]
R.R. Menezes, F.F. Farias, M.F. Oliveira, L.N. Santana, G.A. Neves, H.L. Lira, H.C. Ferreira, Kaolin processing waste applied in the manufacturing of ceramic tiles and mullite bodies, Waste Manag Res, 27 (2009) 78-86.
DOI: 10.1177/0734242x07085338
Google Scholar
[25]
M.E.A. Carreiro, R.C. Santos, V.J. Silva, H.L. Lira, G.A. Neves, R.R. Menezes, L.N.L. Santana, Resíduo de quartzito - matéria-prima alternativa para uso em massas de cerâmica estrutural, Cerâmica, 62 (2016) 170-178.
DOI: 10.1590/0366-69132016623621990
Google Scholar
[26]
A.C. Chaves, G.A. Neves, H.L. Lira, D.N.S. Oliveira, A.M.G.D. Mendonça, Use of the Processed Waste from Kaolin and Granite Sawing in the Manufacture of Tubular Ceramic Membranes, Materials Science Forum, 805 (2014) 337-342.
DOI: 10.4028/www.scientific.net/msf.805.337
Google Scholar
[27]
R.C.O. Lima, H.L. Lira, G.A. Neves, M.C. Silva, K.B. França, Use of Ceramic Membrane for Indigo Separation in Effluent from Textile Industry, Materials Science Forum, 798-799 (2014) 537-541.
DOI: 10.4028/www.scientific.net/msf.798-799.537
Google Scholar
[28]
R.R. Menezes, H.S. Ferreira, G.A. Neves, H. d.L. Lira, H.C. Ferreira, Use of granite sawing wastes in the production of ceramic bricks and tiles, Journal of the European Ceramic Society, 25 (2005) 1149-1158.
DOI: 10.1016/j.jeurceramsoc.2004.04.020
Google Scholar
[29]
R.R. Menezes, H.G.M. Neto, L.N.L. Santana, H.L. Lira, H.S. Ferreira, G.A. Neves, Optimization of wastes content in ceramic tiles using statistical design of mixture experiments, Journal of the European Ceramic Society, 28 (2008) 3027-3039.
DOI: 10.1016/j.jeurceramsoc.2008.05.007
Google Scholar
[30]
C.C. Peiter, C.C. Filho, Rochas ornamentais no século XXI: bases para uma política de desenvolvimento sustentado das exportações brasileiras, Centro de Tecnologia Mineral, Rio de Janeiro, (2001).
Google Scholar
[31]
G.J. Eduardo, F.H.P. Martins, W. Fernando, Comportamento térmico da caulinita hidratada, Química Nova, 26 (2003) 30-35.
DOI: 10.1590/s0100-40422003000100007
Google Scholar
[32]
R.M. German, Sintering theory and practice, Solar-Terrestrial Physics (Solnechno-zemnaya fizika), (1996) 568.
Google Scholar
[33]
J. Ayala, B. Fernández, J.P. Sancho, P. García, Synthesis of three commercial products from Bayer electrofilter powders, Journal of hazardous materials, 178 (2010) 758-765.
DOI: 10.1016/j.jhazmat.2010.02.005
Google Scholar
[34]
J.P. Sancho Martínez, E.J. Ayala, M.P. García Coque, P.B. Fernández, A.D. Costales, The sulfuric acid leaching of Bayer electrofilter fines: A practical kinetical approach, JOM, 58 (2006) 58-62.
DOI: 10.1007/s11837-006-0055-3
Google Scholar
[35]
M. Yoshida, V. Silva, P. Pinto, S. Sant'Anna, M. Silva, C. Carvalho, Physico-chemical characterization and thermal analysis data of alumina waste from Bayer process, Journal of thermal analysis and calorimetry, 109 (2011) 1429-1433.
DOI: 10.1007/s10973-011-1830-0
Google Scholar
[36]
J. Ayala, B. Fernández, J.P. Sancho, P. García, Synthesis of three commercial products from Bayer electrofilter powders, Journal of hazardous materials, 178 (2010) 758-765.
DOI: 10.1016/j.jhazmat.2010.02.005
Google Scholar
[37]
M.I. Yoshida, V.R. Silva, P.C.C. Pinto, S.S. Sant'Anna, M.C. Silva, C.F. Carvalho, Physico-chemical characterization and thermal analysis data of alumina waste from Bayer process, Journal of Thermal Analysis and Calorimetry, 109 (2012) 1429-1433.
DOI: 10.1007/s10973-011-1830-0
Google Scholar
[38]
P. -Y. Chen, M. -L. Lin, Z. Zheng, On the origin of the name kaolin and the kaolin deposits of the Kauling and Dazhou areas, Kiangsi, China, Applied Clay Science, 12 (1997) 1-25.
DOI: 10.1016/s0169-1317(97)00007-0
Google Scholar
[39]
M.S. Prasad, K.J. Reid, H.H. Murray, Kaolin: processing, properties and applications, Applied Clay Science, 6 (1991) 87-119.
DOI: 10.1016/0169-1317(91)90001-p
Google Scholar
[40]
Minerals in Soil Environments, Soil Science Society of America, Madison, WI, (1989).
Google Scholar
[41]
H.H. Murray, Chapter 5 Kaolin Applications, in: H.H. Murray (Ed. ) Developments in Clay Science, Elsevier, 2006, pp.85-109.
Google Scholar
[42]
H.H. Murray, Major kaolin processing developments, International Journal of Mineral Processing, 7 (1980) 263-274.
DOI: 10.1016/0301-7516(80)90022-8
Google Scholar
[43]
A.J. Burggraaf, Important characteristics of inorganic membranes, Membrane Science and Technology, 4 (1996) 21-34.
Google Scholar
[44]
H.P. Hsieh, Inorganic membrane reactors, Catalysis Reviews, 33 (1991) 1-70.
Google Scholar
[45]
B.K. Nandi, B. Das, R. Uppaluri, M.K. Purkait, Microfiltration of mosambi juice using low cost ceramic membrane, Journal of Food Engineering, 95 (2009) 597-605.
DOI: 10.1016/j.jfoodeng.2009.06.024
Google Scholar
[46]
D. Vasanth, G. Pugazhenthi, R. Uppaluri, Fabrication and properties of low cost ceramic microfiltration membranes for separation of oil and bacteria from its solution, Journal of Membrane Science, 379 (2011) 154-163.
DOI: 10.1016/j.memsci.2011.05.050
Google Scholar