Ceramic Membrane Made with Inorganic Residue

Article Preview

Abstract:

Industrial wastes reuse becomes attractive to raw materials economy and to avoid environmental problems. The aim of this study is to develop and characterize tubular ceramic membranes using in their composition inorganic residues generated in the industries, such as, granite, alumina residue from calcination process and kaolin. Initially, it was performed the physical chemical and mineralogical characterization of the residues. Different formulations of ceramic masses have been studied with incorporation of residue, clay and additives for producing tubular membranes through the extrusion process. The membranes were characterized by SEM and flow measurements with distilled water. The membranes were applied to effluent treatment from textile and oil industry. The granite residue showed a high content of SiO2 and Al2O3 in its chemical composition and significant amount of iron and calcium oxides resulting from the granite processing. The granite residue presented average particle size of 13.98 µm. The residue from alumina process contain gibbsite and α-alumina, and average particles size of 15.68 µm. The residue from kaolin processing presented high content of quartz and alumina and average particles size of 29.0 µm. The tubular membrane produced with granite residue presented porosity from 17 to 30%, pores size in the range of 0.06 to 0.14µm and water flow from 10 (at 2 Bar) to 24 L/h.m2 (at 4 Bar). These membranes retained 100% of indigo particles and was effective in the separation of indigo. The membrane prepared with alumina residue presented porosity close to 58% , pore size of 0.96 µm and water flow from 68 to 80 L/h.m2 (at 2 Bar). These membranes were applied with successes in the separation of water from emulsion (100 ppm oil/water) with rejection above 96%. The membrane prepared with kaolin residue presented pore size from 0.16 to 0.22 µm, porosity from 41 to 44% and water flow from 53 to 70 L/h.m2. The ceramic membranes with industrial residues were successfully produced and applied in the treatment of industrial effluents.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 14)

Pages:

60-85

Citation:

Online since:

December 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Acimovic, L. Pavlovic, L. Trumbulovic, L. Andric, M. Stamatovic, Synthesis and characterization of the cordierite ceramics from nonstandard raw materials for application in foundry, Materials Letters, 57 (2003) 2651-2656.

DOI: 10.1016/s0167-577x(02)01345-9

Google Scholar

[2] B.A. Agana, D. Reeve, J.D. Orbell, Performance optimization of a 5nm TiO2 ceramic membrane with respect to beverage production wastewater, Desalination, 311 (2013) 162-172.

DOI: 10.1016/j.desal.2012.11.027

Google Scholar

[3] A.L. Ahmad, M.R. Othman, N.F. Idrus, Synthesis and Characterization of Nano-Composite Alumina?Titania Ceramic Membrane for Gas Separation, Journal of the American Ceramic Society, 89 (2006) 3187-3193.

DOI: 10.1111/j.1551-2916.2006.01183.x

Google Scholar

[4] C. Almandoz, C. Pagliero, A. Ochoa, J. Marchese, Corn syrup clarification by microfiltration with ceramic membranes, Journal of Membrane Science, 363 (2010) 87-95.

DOI: 10.1016/j.memsci.2010.07.017

Google Scholar

[5] M.C. Almécija, R. Ibáñez, A. Guadix, E.M. Guadix, Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane, Journal of Membrane Science, 288 (2007) 28-35.

DOI: 10.1016/j.memsci.2006.10.021

Google Scholar

[6] U. Aust, S. Benfer, M. Dietze, A. Rost, G. Tomandl, Development of microporous ceramic membranes in the system TiO2/ZrO2, Journal of Membrane Science, 281 (2006) 463-471.

DOI: 10.1016/j.memsci.2006.04.016

Google Scholar

[7] S. Barredo-Damas, M.I. Alcaina-Miranda, A. Bes-Piá, M.I. Iborra-Clar, A. Iborra-Clar, J.A. Mendoza-Roca, Ceramic membrane behavior in textile wastewater ultrafiltration, Desalination, 250 (2010) 623-628.

DOI: 10.1016/j.desal.2009.09.037

Google Scholar

[8] S. Baumann, W.A. Meulenberg, H.P. Buchkremer, Manufacturing strategies for asymmetric ceramic membranes for efficient separation of oxygen from air, Journal of the European Ceramic Society, 33 (2013) 1251-1261.

DOI: 10.1016/j.jeurceramsoc.2012.12.005

Google Scholar

[9] J.M. Benito, A. Conesa, F. Rubio, M.A. Rodríguez, Preparation and characterization of tubular ceramic membranes for treatment of oil emulsions, Journal of the European Ceramic Society, 25 (2005) 1895-(1903).

DOI: 10.1016/j.jeurceramsoc.2004.06.016

Google Scholar

[10] P. Bhattacharya, S. Dutta, S. Ghosh, S. Vedajnananda, S. Bandyopadhyay, Crossflow microfiltration using ceramic membrane for treatment of sulphur black effluent from garment processing industry, Desalination, 261 (2010) 67-72.

DOI: 10.1016/j.desal.2010.05.029

Google Scholar

[11] Y. Chang, Z. Ling, Y. Liu, X. Hu, Y. Li, A simple method for fabrication of highly ordered porous α-alumina ceramic membranes, Journal of Materials Chemistry, 22 (2012) 7445.

DOI: 10.1039/c2jm15279g

Google Scholar

[12] W. Chen, Y. Miyamoto, Fabrication of porous silicon carbide ceramics with high porosity and high strength, Journal of the European Ceramic Society, 34 (2014) 837-840.

DOI: 10.1016/j.jeurceramsoc.2013.10.008

Google Scholar

[13] V.V. Cordeiro, M.C. da Silva, H.L. Lira, N.L. de Freitas, A.C.F. de Melo Costa, Porous Anisotropic Alumina Ceramic Membrane: Preparation and Characterization, Materials Science Forum, 727-728 (2012) 1485-1489.

DOI: 10.4028/www.scientific.net/msf.727-728.1485

Google Scholar

[14] M.C. da Silva, F.N. da Silva, H. de Lucena Lira, N.L. de Freitas, Ceramic Membrane Made of Alumina Synthesized by Pechini Method for Application in Microfiltration Processes, Materials Science Forum, 820 (2015) 79-83.

DOI: 10.4028/www.scientific.net/msf.820.79

Google Scholar

[15] M.C.S. Gomes, N.C. Pereira, S.T.D. d. Barros, Separation of biodiesel and glycerol using ceramic membranes, Journal of Membrane Science, 352 (2010) 271-276.

DOI: 10.1016/j.memsci.2010.02.030

Google Scholar

[16] M. Lee, Z. Wu, K. Li, 2 - Advances in ceramic membranes for water treatment, in: Advances in Membrane Technologies for Water Treatment, Woodhead Publishing, Oxford, 2015, pp.43-82.

DOI: 10.1016/b978-1-78242-121-4.00002-2

Google Scholar

[17] T. Tsuru, Nano/subnano-tuning of porous ceramic membranes for molecular separation, Journal of Sol-Gel Science and Technology, 46 (2008) 349-361.

DOI: 10.1007/s10971-008-1712-5

Google Scholar

[18] M.C. Duke, S. Mee, J.C. da Costa, Performance of porous inorganic membranes in non-osmotic desalination, Water Res, 41 (2007) 3998-4004.

DOI: 10.1016/j.watres.2007.05.028

Google Scholar

[19] J. Kim, B. Van der Bruggen, The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment, Environ Pollut, 158 (2010) 2335-2349.

DOI: 10.1016/j.envpol.2010.03.024

Google Scholar

[20] T. Tsuru, T. Sudou, S. Kawahara, T. Yoshioka, M. Asaeda, Permeation of Liquids through Inorganic Nanofiltration Membranes, J Colloid Interface Sci, 228 (2000) 292-296.

DOI: 10.1006/jcis.2000.6955

Google Scholar

[21] I. de Oliveira Guimarães, H.L. Lira, S.K. da Silva, S.L. Dias, R. d.C. de Oliveira Lima, Alumina Residue Characterization to Produce Tubular Ceramic Membranes, Materials Science Forum, 727-728 (2012) 1508-1513.

DOI: 10.4028/www.scientific.net/msf.727-728.1508

Google Scholar

[22] R. d.C. de Oliveira Lima, I. de Oliveira Guimarães, H.L. Lira, G. de Araújo Neves, C.D. da Silva, M.C. da Silva Farias, Development of Ultrafiltration Tubular Ceramic Membrane Using in their Composition Granite Residue, Materials Science Forum, 727-728 (2012).

DOI: 10.4028/www.scientific.net/msf.727-728.652

Google Scholar

[23] R.C.O. Lima, H.L. Lira, G.A. Neves, M.C. Silva, K.B. França, Study of the Influence of Granite Residue in Different Compositions to Prepare Ceramic Membranes, Materials Science Forum, 798-799 (2014) 542-547.

DOI: 10.4028/www.scientific.net/msf.798-799.542

Google Scholar

[24] R.R. Menezes, F.F. Farias, M.F. Oliveira, L.N. Santana, G.A. Neves, H.L. Lira, H.C. Ferreira, Kaolin processing waste applied in the manufacturing of ceramic tiles and mullite bodies, Waste Manag Res, 27 (2009) 78-86.

DOI: 10.1177/0734242x07085338

Google Scholar

[25] M.E.A. Carreiro, R.C. Santos, V.J. Silva, H.L. Lira, G.A. Neves, R.R. Menezes, L.N.L. Santana, Resíduo de quartzito - matéria-prima alternativa para uso em massas de cerâmica estrutural, Cerâmica, 62 (2016) 170-178.

DOI: 10.1590/0366-69132016623621990

Google Scholar

[26] A.C. Chaves, G.A. Neves, H.L. Lira, D.N.S. Oliveira, A.M.G.D. Mendonça, Use of the Processed Waste from Kaolin and Granite Sawing in the Manufacture of Tubular Ceramic Membranes, Materials Science Forum, 805 (2014) 337-342.

DOI: 10.4028/www.scientific.net/msf.805.337

Google Scholar

[27] R.C.O. Lima, H.L. Lira, G.A. Neves, M.C. Silva, K.B. França, Use of Ceramic Membrane for Indigo Separation in Effluent from Textile Industry, Materials Science Forum, 798-799 (2014) 537-541.

DOI: 10.4028/www.scientific.net/msf.798-799.537

Google Scholar

[28] R.R. Menezes, H.S. Ferreira, G.A. Neves, H. d.L. Lira, H.C. Ferreira, Use of granite sawing wastes in the production of ceramic bricks and tiles, Journal of the European Ceramic Society, 25 (2005) 1149-1158.

DOI: 10.1016/j.jeurceramsoc.2004.04.020

Google Scholar

[29] R.R. Menezes, H.G.M. Neto, L.N.L. Santana, H.L. Lira, H.S. Ferreira, G.A. Neves, Optimization of wastes content in ceramic tiles using statistical design of mixture experiments, Journal of the European Ceramic Society, 28 (2008) 3027-3039.

DOI: 10.1016/j.jeurceramsoc.2008.05.007

Google Scholar

[30] C.C. Peiter, C.C. Filho, Rochas ornamentais no século XXI: bases para uma política de desenvolvimento sustentado das exportações brasileiras, Centro de Tecnologia Mineral, Rio de Janeiro, (2001).

Google Scholar

[31] G.J. Eduardo, F.H.P. Martins, W. Fernando, Comportamento térmico da caulinita hidratada, Química Nova, 26 (2003) 30-35.

DOI: 10.1590/s0100-40422003000100007

Google Scholar

[32] R.M. German, Sintering theory and practice, Solar-Terrestrial Physics (Solnechno-zemnaya fizika), (1996) 568.

Google Scholar

[33] J. Ayala, B. Fernández, J.P. Sancho, P. García, Synthesis of three commercial products from Bayer electrofilter powders, Journal of hazardous materials, 178 (2010) 758-765.

DOI: 10.1016/j.jhazmat.2010.02.005

Google Scholar

[34] J.P. Sancho Martínez, E.J. Ayala, M.P. García Coque, P.B. Fernández, A.D. Costales, The sulfuric acid leaching of Bayer electrofilter fines: A practical kinetical approach, JOM, 58 (2006) 58-62.

DOI: 10.1007/s11837-006-0055-3

Google Scholar

[35] M. Yoshida, V. Silva, P. Pinto, S. Sant'Anna, M. Silva, C. Carvalho, Physico-chemical characterization and thermal analysis data of alumina waste from Bayer process, Journal of thermal analysis and calorimetry, 109 (2011) 1429-1433.

DOI: 10.1007/s10973-011-1830-0

Google Scholar

[36] J. Ayala, B. Fernández, J.P. Sancho, P. García, Synthesis of three commercial products from Bayer electrofilter powders, Journal of hazardous materials, 178 (2010) 758-765.

DOI: 10.1016/j.jhazmat.2010.02.005

Google Scholar

[37] M.I. Yoshida, V.R. Silva, P.C.C. Pinto, S.S. Sant'Anna, M.C. Silva, C.F. Carvalho, Physico-chemical characterization and thermal analysis data of alumina waste from Bayer process, Journal of Thermal Analysis and Calorimetry, 109 (2012) 1429-1433.

DOI: 10.1007/s10973-011-1830-0

Google Scholar

[38] P. -Y. Chen, M. -L. Lin, Z. Zheng, On the origin of the name kaolin and the kaolin deposits of the Kauling and Dazhou areas, Kiangsi, China, Applied Clay Science, 12 (1997) 1-25.

DOI: 10.1016/s0169-1317(97)00007-0

Google Scholar

[39] M.S. Prasad, K.J. Reid, H.H. Murray, Kaolin: processing, properties and applications, Applied Clay Science, 6 (1991) 87-119.

DOI: 10.1016/0169-1317(91)90001-p

Google Scholar

[40] Minerals in Soil Environments, Soil Science Society of America, Madison, WI, (1989).

Google Scholar

[41] H.H. Murray, Chapter 5 Kaolin Applications, in: H.H. Murray (Ed. ) Developments in Clay Science, Elsevier, 2006, pp.85-109.

Google Scholar

[42] H.H. Murray, Major kaolin processing developments, International Journal of Mineral Processing, 7 (1980) 263-274.

DOI: 10.1016/0301-7516(80)90022-8

Google Scholar

[43] A.J. Burggraaf, Important characteristics of inorganic membranes, Membrane Science and Technology, 4 (1996) 21-34.

Google Scholar

[44] H.P. Hsieh, Inorganic membrane reactors, Catalysis Reviews, 33 (1991) 1-70.

Google Scholar

[45] B.K. Nandi, B. Das, R. Uppaluri, M.K. Purkait, Microfiltration of mosambi juice using low cost ceramic membrane, Journal of Food Engineering, 95 (2009) 597-605.

DOI: 10.1016/j.jfoodeng.2009.06.024

Google Scholar

[46] D. Vasanth, G. Pugazhenthi, R. Uppaluri, Fabrication and properties of low cost ceramic microfiltration membranes for separation of oil and bacteria from its solution, Journal of Membrane Science, 379 (2011) 154-163.

DOI: 10.1016/j.memsci.2011.05.050

Google Scholar