Membrane Technology for Human Health

Article Preview

Abstract:

Membranes are considered to be barriers that separates two phases and that totally or partially restricts the transport of one or several chemical species present in the phases. They have several applications, including food and pharmaceutical industry, sewage treatment, chemical and medical fields. In health area, must present characteristics such as bioactivity, biocompatibility, biodegradability, be non-toxic, anticarcinogenic and antimutagenic, aiming to protect human health, besides having properties related to mechanical resistance, permeability, among others that will depend on the application.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 14)

Pages:

43-59

Citation:

Online since:

December 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.W. Baker, Membrane technology and applications. John Wiley & Sons (2004).

Google Scholar

[2] R.L. Oréfice, M.M. Pereira, H.S. Mansur, Biomaterials: fundamentals and applications. Cultura Médica, Sao Paulo (2006). (In Portuguese).

Google Scholar

[3] J.C.O. Villanova, R.L. Oréfice, A.S. Cunha, Pharmaceutical applications of polymers. Polymers: Science and technology, 20 (2010) 51-64. (In Portuguese).

Google Scholar

[4] J. C Mierzwa, I. Fespanhos, Water in industry - Rational use and reuse. Text Factory, Sao Paulo, 2005. 144p (In Portuguese).

Google Scholar

[5] A.C. Harbert, C.P. Borges, R. Nobrega, General aspects of membrane processes. In: A.C. Harbert, C.P. Borges, R. Nobrega. Membrane Separation Processes. Rio de Janeiro, 2006. (In Portuguese).

Google Scholar

[6] R.P. Meinig, Clinical use of resorbable polymeric membranes in the treatment of bone defects. Orthop Clin North Am, 41(2010) 39-47.

DOI: 10.1016/j.ocl.2009.07.012

Google Scholar

[7] J.C. O Villanova, V.R. Sá, Excipients: practical guide to standardization, Pharmabooks, Sao Paulo (2009). (In Portuguese).

Google Scholar

[8] S. Agarwal, J. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications, Polymer. 49 (2008) 5603-5621.

DOI: 10.1016/j.polymer.2008.09.014

Google Scholar

[9] N. Bhardwaj, S. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances. 28 (2010) 325-347.

DOI: 10.1016/j.biotechadv.2010.01.004

Google Scholar

[10] M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Kluwer Academic Publishers, Dordrecht (2004).

Google Scholar

[11] P.X. Ma, Biomimetic materials for tissue engineering, Advanced Drug Delivery Reviews, 60 (2008) 184-198.

DOI: 10.1016/j.addr.2007.08.041

Google Scholar

[12] M. Retzepi, N. Donos, Guided bone regeneration: biological principle and therapeutic applications, Clin. Oral Impl. Res., 21(2010) 567-576.

DOI: 10.1111/j.1600-0501.2010.01922.x

Google Scholar

[13] P.L. Silva. Development of Modified Yam Starch Blends with Chitosan and PVA. 2010. 120 f. Dissertation (Master in Chemistry), Federal University of Ceara. Fortaleza, 2010. (In Portuguese).

Google Scholar

[14] B. Cuq, N. Gontard, S. Guilbert. Edible Films and Coatings as Active Layers. In: Active Food Packagings. M.L. Rooney (ed). Glasgow: Blackie Academic & Professional, pp.111-142, (1995).

DOI: 10.1007/978-1-4615-2175-4_5

Google Scholar

[15] P.J.A. Sobral. Functional properties of gelatine biofilms as a function of thickness. Science & Engineering, Uberlandia, 8(1) (1999), 60-67. (In Portuguese).

Google Scholar

[16] L.M. Oliveira, R.M. V Alves, C.I.G.L. Sarantópolus, M. Padula, E.E.C. Garcia, L. Coltro, Tests for evaluation of flexible plastic packaging. Campinas: Packaging Technology Center, 1996. p.219. (In Portuguese).

Google Scholar

[17] A.M.M. Gomes. Preparation, characterization and evaluation of the biodegradability of starch blends/chitosan/PVA. 2008. 176f. Thesis (PhD in Inorganic Chemistry), Federal University of Ceara, Fortaleza, 2008. (In Portuguese).

Google Scholar

[18] A. Garcia, J.A. Spim, C.A.D. Santos, Materials testing. Rio de Janeiro: LTC, 2000. (In Portuguese).

Google Scholar

[19] H.J. Park, M. Chinnan. Gas and water vapor barrier properties of edible films from protein and cellulosic materials. Journal of food Engeneering. Oxford, 25, (4) (1995), 497-507.

DOI: 10.1016/0260-8774(94)00029-9

Google Scholar

[20] M.D. Matta Júnior, S.B.S. Sarmento, C.I.G.L. Sarantopoulos, S.S. Zocchi. Barrier properties and solubility of pea starch films associated with xanthan gum and glycerol. Polymers, 21, (1) (2011), 67-72. (In Portuguese).

DOI: 10.1002/star.201000088

Google Scholar

[21] R.F. Santana. Development and characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol or sorbitol. 2014. 83f. Dissertation (MSc in Food Engineering), State University of Southwest of Bahia. Bahia, 2013. (In Portuguese).

Google Scholar

[22] D.C. Bastos. Study of the reduction of the hydrophilicity of biodegradable films of thermoplastic corn starch with and without banana fiber reinforcement through plasma treatment of SF6. Thesis (Doutorado), Federal University of Rio de Janeiro. Rio de Janeiro, 2010. (In Portuguese).

DOI: 10.24873/j.rpemd.2019.10.459

Google Scholar

[23] A.S. Scheibe. Production and characterization of biodegradable cassava starch and fiber packaging using the tape-casting technique. 2012. 154 f. Dissertation (MSc in Food Engineering). Federal University of Santa Catarina, Florianópolis, 2012. (In Portuguese).

Google Scholar

[24] A.R. Jaime, Membranas compuestas base polimérica: preparación, caracterización y estudios para la separación de gases". Tesis Maestro em Tenología de Polímeros. Centro de Investigacion em Química Aplicada (CIOA), (2013).

DOI: 10.24275/uami.f7623c65f

Google Scholar

[25] M. Cheryan, (Ed. ) Ultrafiltration and microfiltration handbook, Lancaster, Technomic Publication, 1998. 526 p.

Google Scholar

[26] A.C. Habert, C.P. Borges, R. Nobrega, Aspectos gerais dos processos com membranas. In: A.C. Habert, C.P. Borges, R. Nobrega, Processos de separação com membranas. Rio de Janeiro, Editora da Universidade Federal do Rio de Janeiro, 1997. cap. 1. (In Portuguese).

DOI: 10.5151/9788521219460-05

Google Scholar

[27] B. Ostergaard, Applications of membrane processing in the dairy industry. In: Concentration and drying of foods, Amsterdan, Elsevier, 1989. pp.133-145.

Google Scholar

[28] A.L.R. Pires A.C.K. Bierhalz, A. Moraes, Biomaterials: types, applications and market. New Chemistry, 38 (7) (2015) 957-971. (In Portuguese).

Google Scholar

[29] P.S. Stayton, M. E El-Sayed, N. Murthy, V. Bulmus, C. Lackey, C. Cheung, A.S. Hoffman, Smart, delivery systems for biomolecular therapeutics. Orthod. Craniofacial Res., 8 (2005) 219-225.

DOI: 10.1111/j.1601-6343.2005.00336.x

Google Scholar

[30] S.G. Kumbhar, S.H. Pawar, Self-Functionalized, Oppositely Charged Chitosan-Alginate Scaffolds for Biomedical Applications. Biotechnology Industry Journal, 13 (2), (2017).

Google Scholar

[31] Y. Tabata, Biomaterial technology for tissue engineering applications. Journal of the Royal Society Interface, London, 6 (3), (2009) 311-324.

Google Scholar

[32] D.F. Williams, On the nature of biomaterials. Biomaterials, 30 (2009), 5897–5909.

Google Scholar

[33] J.C. Nery, Obtaining and characterization of films containing sodium alginate and chitosan for potential application in the treatment of cutaneous lesions. Dissertation (MSc in Materials Engineering). Federal Center for Technological Education of Minas Gerais, Belo Horizonte, 2014. (In Portuguese).

Google Scholar

[34] G. Alvarado, Transdermal membrane of controlled release using chitosan, plasma and platelets for wounds regeneration. Dissertation. (MSc in Medical Biotechnology), 2012. (In Portuguese).

Google Scholar

[35] D.E. Heath, S.L. Cooper, Biomaterials Science: An Introduction to Materials in Medicine. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., eds.; Academic Press: Oxford, 2013, cap. I. 2. 2. Polymers: Basic Principles.

Google Scholar

[36] J.Y. Wong, J.D. Bronzino, Biomaterials, Taylor & Francis Group: New York, (2007).

Google Scholar

[37] L.L. Hench, -Bioactive Materials: the Potential for Tissue Regeneration, in: Founders Award, Society for Biomaterials 24th Annual Meeting, San Diego - CA, (1998).

Google Scholar

[38] M. Navarro, A Michiardi, O Castaño, J. A Planell, A. Biomaterials in orthopaedics. J. R. Soc. Interface, 5 (2008)1137-1158.

DOI: 10.1098/rsif.2008.0151

Google Scholar

[39] H. Abukawa, M. Papadaki, M. Abulikemu, J. Leaf, J.P. Vacanti, L. B Kaban, M. J Troulis, The Engineering of Craniofacial Tissues in the Laboratory: A Review of Biomaterials for Scaffolds and Implant Coatings. Dent. Clin. N. Am., 50 (2006) 205-216.

DOI: 10.1016/j.cden.2005.11.006

Google Scholar

[40] S. Oh, N. Oh, M. Appleford, J.L. Ong, Bioceramics for Tissue Engineering Applications – A Review. Am. J. Biochem. & Biotechnol., 2, (2) (2006) 49-56.

Google Scholar

[41] H.V. Precheur, Bone Graft Materials. Dent. Clin. N. Am., 51 (2007) 729-746.

Google Scholar

[42] C.A. Rezende, C. Luchesi, M.L.P. Barbo, E.A.R. Duek. Poly (Lactic Acid-Co-Glycolic Acid) Membranes as Skin Dressings: In Vitro and In Vivo Degradation. Polymers: Science and Technology, 15 (3) (2005), 232-238. (In Portuguese).

Google Scholar

[43] V. Lekovic, P.M. Camargo, M. Weinlaender, E.B. Kenney, N. Vasilic, Combination use of bovine porous bone mineral, enamel matrix proteins, and a bioabsorbable membrane in intrabony periodontal defects in humans. J. periodontol. 72(5) (2001).

DOI: 10.1902/jop.2001.72.5.583

Google Scholar

[44] P. Bunyaratavej, H.L. Wang. Collagen membranes: review. J. periodontol., 72(2) (2001), 215-29.

Google Scholar

[45] J. Joly, D. Bazan, A. Martorelli, Clinical and radiographic evaluation of periodontal intrabony defects treated with GTR: A pilot study. J. periodontol., 73 (2002) 353-354.

Google Scholar

[46] C.M. Garbin, Bone grafts and guided tissue regeneration: basic notions. Sao Paulo: Pancast editor; 1994. (In Portuguese).

Google Scholar

[47] A.S.F. Monteiro, N.L. Macedo, L.G.S. Macedo, V.N. Valva, M.F. Gomes, Polyurethane and PTFE barriers for guided bone regeneration: A hismorfometric study in rabbits parietal bone. Braz. dent. sci., 11(4) (2008) 6-12.

DOI: 10.14295/bds.2008.v11i4.654

Google Scholar

[48] B.J.O. Sánchez, J.V. Pérez, J.A.G. Trinidad, Colonización bacteriana de membranas de PTFE-e en regeneración tisular guiada. Rev. ADM. LXIII(4), (2006) 135-141.

Google Scholar

[49] P.R. Cury, C. Furuse, M.T. Martins, E.A. Sallum, N.S. Araújo, Root resorption and ankylosis associated with guided tissue regeneration. J. am. dent. Assoc, 136(3) (2005), 337-341.

DOI: 10.14219/jada.archive.2005.0174

Google Scholar

[50] W.S. Song, C.S. Kim, S.H. Choi, G.J. Jhon, H.Y. Kim, K.S. Cho, C.K. Kim, J.C. Chai, The effects of a bioabsorbable barrier membrane containing safflower seed extracts on periodontal healing of 1-wall intrabony defects in beagle dogs. J. periodontol., 76(1) (2005).

DOI: 10.1902/jop.2005.76.1.22

Google Scholar

[51] L.S. Iamaguti, C.V.S. Brandão, Use of cellulose-based biosynthetic membrane in guided tissue regeneration. Semina Agricultural Sciences, 28(4) (2007) 701-708. (In Portuguese).

Google Scholar

[52] J.B.Z. Costa, F. Silva, C.A. Dultra, L.F. Souza, M. C. N. E. Santos, The use of biological membranes for implant-guided bone regeneration: a literature review, Bahiana Journal of Dentistry, 7(1) (2016) 14-21. (In Portuguese).

Google Scholar

[53] I. Cohen, Biomaterials in Cardiology. (InspiredMD Corporation, Dereh Hashalom 4, Tel–Aviv). Disponível em: <http: /chemistry. org. il/booklet/22/pdf/ilana_cohen. pdf>. Access in: August 14th, (2017).

Google Scholar

[54] V.D. Jahno, Evaluation of in vitro cytotoxicity and in vivo biocompatibility of polymeric biomaterials. Porto Alegre. 2009. 113p. Thesis (PhD in Medicine and Health Sciences). Postgraduate Program in Medicine and Health Sciences. (In Portuguese).

Google Scholar

[55] M.W. Laschke, A. Strohe, C. Scheuer, D. Eglin, S. Verrier, M. Alini, T. Pohlemann, M.D. Menger, In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomaterialia, 5 (6) (2009).

DOI: 10.1016/j.actbio.2009.02.006

Google Scholar

[56] E.L.C. GRACIOLI, Development of polyurethane membranes with rapamycin and its potential use in vascular regeneration. Porto Alegre. 2016. 111p. Thesis (PhD in Materials Engineering and Technology Postgraduate Program in Materials Engineering and Technology from Pontific Catolic University of Rio Grande do Sul. (In Portuguese).

Google Scholar

[57] S. Riveroa, M.A. García, A. Pinotti, Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydrate polymers, 82, (2010) 270-276.

DOI: 10.1016/j.carbpol.2010.04.048

Google Scholar

[58] V.V.C. Azevedo, S.A. Chaves, D.C. Bezerra, A. CF. M. Costa, Ceramic materials used for implants. Electronic Journal of Materials and Processes, 2, (2007) 35-42. (In Portuguese).

Google Scholar

[59] K. Jayakumar, M. Prabaharan, P.T. Sudheesh Kumar, S.V. Nair, H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, (2011).

DOI: 10.1016/j.biotechadv.2011.01.005

Google Scholar

[60] M. Dash, F. Chiellin, R. M. Ottenbrite, E. Chiellini, Chitosan - A versatile semisynthetic polymer in biomedical applications. Progress in Polymer Science, 36 (2011) 981–1014.

DOI: 10.1016/j.progpolymsci.2011.02.001

Google Scholar

[61] X. Huang, Y. Suna, J. Niea, W. Lua, L. Yanga, Z. Zhangb, H. Yinc, Z. Wanga, Hua, Using absorbable chitosan hemostatic sponges as a promising surgical dressing, International Journal of Biological Macromolecules 75 (2015) 322–329.

DOI: 10.1016/j.ijbiomac.2015.01.049

Google Scholar

[62] N. Bhardwaj, S. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances. 28 (2010) 325-347.

DOI: 10.1016/j.biotechadv.2010.01.004

Google Scholar

[63] T.A. Kowaleswsky, S. Blonski, S. Barrel, Experiments and modeling of electrospinning process, Bulletin of the Polish Academy of Sciences Technical Sciences. 53 (2005) 385-394.

Google Scholar

[64] P.X. Ma, Biomimetic materials for tissue engineering, Advanced Drug Delivery Reviews, 60 (2008) 184-198.

DOI: 10.1016/j.addr.2007.08.041

Google Scholar

[65] T. Sill, H.A. Von Recum, Electrospinning: Applications in drug delivery and tissue engineering, Biomaterials. 29 (2008) 1989-(2006).

DOI: 10.1016/j.biomaterials.2008.01.011

Google Scholar

[66] Y.M. Shin, M.M. Hohman, M.P. Brenner, G.C. Rutledge, Experimental characterization of electrospinning: the electrically forced jet and instabilities, Polymer, 42(25) (2001) 9955-9967.

DOI: 10.1016/s0032-3861(01)00540-7

Google Scholar

[67] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology. 63 (2003) 2223-2253.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[68] D. Liang, B. S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications, Advanced Drug Delivery Reviews. 59 (2007) 1392-1412.

DOI: 10.1016/j.addr.2007.04.021

Google Scholar

[69] G. Wnek, L. Bowlin, Encyclopedia of Biomaterials and Biomedical Engineering, Marcel Dekker Ed., New York, USA (2004) 543-549, 737-739, 1663-1669.

Google Scholar

[70] W.M. Saltzman, Tissue Engineering: engineering principles for the design of replacement organs and tissues, Oxford University Press, Inc., New York, USA (2004).

Google Scholar

[71] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano/micro scale poly(L-lactid acid) aligned fibers and their potential in neural tissue engineering, Biomaterials. 26 (2005) 2603-2610.

DOI: 10.1016/j.biomaterials.2004.06.051

Google Scholar

[72] N. Bhattari, D. Edmonson, O. Veiseh, F. Matsen, M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials. 26 (2005) 6176-6184.

DOI: 10.1016/j.biomaterials.2005.03.027

Google Scholar

[73] D. Han, P.I. Gouma, Electrospun bioscaffolds that mimic the topology of extracellular matrix, Nanomedicine: Nanotechnology, Biology and Medicine. 2(1) (2006) 37-41.

DOI: 10.1016/j.nano.2006.01.002

Google Scholar

[74] I.A. Hidalgo, F. Sojo, F. Arvelo, M.A. Sabino, Functional electrospun Poly(lactic acid) scaffolds for biomedical applications. Experimental conditions, degradation and biocompatibility study. Molecular and Cellular Biomechanics. 10(2) (2013).

Google Scholar

[75] S. Agarwal, J. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications, Polymer. 49 (2008) 5603-5621.

DOI: 10.1016/j.polymer.2008.09.014

Google Scholar

[76] M. Prabakaran, J. Venugopal, D. Kai, S. Ramakrishna, Biomimetic Material Strategies for Cardiac Tissue Engineering, Materials Science and Engineering C. 31(3) (2011) 503-513.

DOI: 10.1016/j.msec.2010.12.017

Google Scholar

[77] M.A. Sabino, M. Loaiza, J. Dernowsek, R. Rezende, J. VL. Silva, Review: Techniques for manufacturing polymer scaffolds with potential applications in Tissue Engineering. Revista Latinoamerica de Metalurgia y Materiales RLMM. 37(2) (2017) 1-27.

Google Scholar

[78] R. Luoh, H.T. Hahn, Electrospun nanocomposite fiber mats as gas sensors, Composites Science and Technology. 66(4) (2006) 2436–2441.

DOI: 10.1016/j.compscitech.2006.03.012

Google Scholar

[79] C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering, Biomaterials. 25 (2004) 877-886.

DOI: 10.1016/s0142-9612(03)00593-3

Google Scholar

[80] S. J. Lee, S.H. Oh, J. Liu, S. Soker, A. Atala, J. Yoo, The use of treatments to enhance the mechanical properties of electrospun poly(ε-caprolactone) scaffolds, Biomaterials. 29 (2008) 1422-1430.

DOI: 10.1016/j.biomaterials.2007.11.024

Google Scholar