[1]
D.G.F. Cunha, M.C. Calijuri, Engenharia Ambiental. Conceitos, Tecnologia e Gestão. Elsevier Editora Ltda, Rio de Janeiro, (2013).
Google Scholar
[2]
M.J. Geerken, M.N.W. Groenendijk, R.G.H. Lammertink, M. Wessling, Micro-fabricated metal nozzle plates used for water-in-oil and oil-in-water emulsification. J. Membr. Sci. 310 (2008) 374-383.
DOI: 10.1016/j.memsci.2007.11.008
Google Scholar
[3]
A.Y. Khan, S. Talegaonkar, Z. Iqbal, F.J. Ahmed, R.K. Khar, Multiple emulsions: an overview. J. Curr. Drug Deliv. 3 (2006) 429-443.
DOI: 10.2174/156720106778559056
Google Scholar
[4]
A.M.D. Leite, E.M. Araújo, V. N. Medeiros, R.A. Paz, H.L. Lira, Abbass Hashim. (Org. ). Advances in nanocomposite technology, Rijeka, Croatia: InTech Publishers, 2011, pp.115-130.
Google Scholar
[5]
M. Mulder, Basic Principles of Membrane Technology, in Anonymous, Netherlands. 2nd Editions. Kluwer Academic Publishers, (1996).
Google Scholar
[6]
H. Strathmann, L. Giorno, E. Drioli, An Introduction to Membrane Science and Technology. Italy: Rende, (2006).
Google Scholar
[7]
B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J. Membr. Sci. 325 (2008) 427-437.
DOI: 10.1016/j.memsci.2008.08.007
Google Scholar
[8]
P. Jacob, P. Phungsai, K. fukushi, C. Visvanathan, Direct contact membrane distillation for anaerobic effluent treatment. J. Membr. Sci. 475 (2015) 330-339.
DOI: 10.1016/j.memsci.2014.10.021
Google Scholar
[9]
W. Ma, Z. Guo, J. Zhao, Q. Yu, F. Wang, J. Han, H. Pan, J. Yao, Q. Zhang, S.K. Samal, S.C. Smedt, C. Huang, Polyimide/cellulose acetate core/ shell electrospun fibrous membranes for oil-water separation. Sep. Purific. Technol. 177 (2017) 71-85.
DOI: 10.1016/j.seppur.2016.12.032
Google Scholar
[10]
T. Belliacanta, P. Poletto, M.B. Thürmer, J. Duarte, A. Toscan, M. Zeni, Preparação e caracterização de membranas poliméricas a partir da blenda polisulfona/poliuretano. Polímeros. 21 (2011) 229-232.
DOI: 10.1590/s0104-14282011005000045
Google Scholar
[11]
P. Poletto, J. Duarte, M.S. Lunkes, V. Santos, M. Zeni, Avaliação das características de transporte em membranas de poliamida 66 preparadas com diferentes solventes. Polímeros. 22 (2012) 273-277.
DOI: 10.1590/s0104-14282012005000041
Google Scholar
[12]
M.V. Brami, Y. Oren, C. Linder, R. Bernstein, Nanofiltration properties of asymmetric membranes prepared by phase inversion of sulfonated nitro-polyphenylsulfone. Polymer. 111 (2017) 137-147.
DOI: 10.1016/j.polymer.2017.01.048
Google Scholar
[13]
R.W. Baker, Membrane Technology and Application. Chichester: John Wiley & Sons Ltda, (2004).
Google Scholar
[14]
P. Anadão, Ciência e Tecnologia de Membranas, Artliber Editora Ltda. São Paulo, (2010).
Google Scholar
[15]
G. Choudalakis, A.D. Gotsis, Permeability of polymer/clay nanocomposites: a review. Eur Polym J. 45 (2009) 967-984.
DOI: 10.1016/j.eurpolymj.2009.01.027
Google Scholar
[16]
J.P. Carisuelo, R. Gavara, P. Hernández-Muñoz, Diffusion modeling in polymer-clay nanocomposites for food packaging applications through finite element analysis of tem images. J. Membr. Sci. 482 (2015) 92-102.
DOI: 10.1016/j.memsci.2015.02.031
Google Scholar
[17]
J. J. Burgos-Mármol, A. Patti, Unveiling the impact of nanoparticle size dispersity on the behavior of polymer nanocomposites. Polymer. 113 (2017) 92-104.
DOI: 10.1016/j.polymer.2017.01.081
Google Scholar
[18]
L.B. Paiva, A.R. Morales, T.R. Guimarães, Propriedades mecânicas de nanocompósitos de polipropileno e montmorilonita organofílica. Polímeros. 16 (2006) 136-140.
DOI: 10.1590/s0104-14282006000200014
Google Scholar
[19]
L.B. Paiva, A.R. Morales, F.R.V. Diaz, Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Cerâmica. 54 (2008) 213-226.
DOI: 10.1590/s0366-69132008000200012
Google Scholar
[20]
A.M.W. Bulte, Nylon 4, 6 as membrane material: polymer crystallization during immersion precipitation. Netherlands, (1994).
DOI: 10.3990/1.9789090068848
Google Scholar
[21]
T.M. Don, Y.C. Hsu, H.Y. Tai, E. Fu, L.P. Cheng, Preparation of bi-continuous macroporous polyamide copolymer membranes for cell culture, J. Membr. Sci. 415-416 (2012) 784-792.
DOI: 10.1016/j.memsci.2012.05.070
Google Scholar
[22]
L.P. Cheng, D.J.L. Lin, C.L. Chang, C.K. Lee, Fine structure and crystallinity of nylon 66 membranes prepared by phase inversion in the water/formic acid/nylon 66 system. Eur Polym J. 42 (2006) 356-367.
DOI: 10.1016/j.eurpolymj.2005.07.007
Google Scholar
[23]
N. Ma, J. Wei, R. Liao, C.Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis, J. Membr. Sci. 405-406 (2012) 149-157.
DOI: 10.1016/j.memsci.2012.03.002
Google Scholar
[24]
H. Wu, B. Tang, P. Wu, Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J. Membr. Sci. 428 (2013) 341-348.
DOI: 10.1016/j.memsci.2012.10.053
Google Scholar
[25]
D.S. Biron, P. Poletto, J. Duarte, M. Zeni, C.P. Bergmann, V. Santos, Preparation and characterization of PA66/alumina composite membrane. Mater Res. 18 (2015) 748-755.
DOI: 10.1590/1516-1439.004715
Google Scholar
[26]
L. Huang, J.R. Mccutcheon, Hydrophilic nylon 6, 6 nanofibers supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 457 (2007) 162-169.
DOI: 10.1016/j.memsci.2014.01.040
Google Scholar
[27]
J. Espeso, A.E. Lozano, J.G. Campa, J. Abajo, Effect of substituents on the permeation properties of polyamide membranes. J. Membr. Sci. 280 (2006) 659-665.
DOI: 10.1016/j.memsci.2006.02.023
Google Scholar
[28]
A.C. Habert, C.P. Borges, R. Nóbrega, Processo de separação com membranas. 1a ed. E-papers Serviços Editoriais Ltda, Rio de Janeiro, (2006).
Google Scholar
[29]
ASTM, ASTM E 96/E 96M-05 - Standard test methods for water vapor transmission of materials, Philadelphia, (2005).
Google Scholar
[30]
V.N. Medeiros, T.C. Carvalho, A.M.D. Leite, E.M. Araújo, H.L. Lira, Evaluation of the effect of clay in polyethersulfone membranes, Des. Water Treat. 56 (2015) 3554-3560.
DOI: 10.1080/19443994.2014.993724
Google Scholar
[31]
Manual Petrobras. Manual do sistema de gestão da qualidade e SMS do GLAF. Determinação do teor de óleo e graxa por espectrofotometria de absorção molecular, (2000).
DOI: 10.47749/t/unicamp.1995.95154
Google Scholar
[32]
D. Shriver, M. Weller, T. Overton, Jonathan Rourke, F. Armstrong. Inorganic Chemistry. Sixth ed. Macmillan Learning. New York, (2014).
Google Scholar
[33]
K.M. Medeiros, D.F. Lima, C.A.P. Lima, E.M. Araújo, H.L. Lira, V.N. Medeiros, Development of polymer membranes modified with a porogenic agent. Mater. Sci. Forum. 869 (2016) 815-819.
DOI: 10.4028/www.scientific.net/msf.869.815
Google Scholar
[34]
C. Karaguzel, T. Çetinel, F. Boylu, H. Çinku, M.S. Celik, Activation of (Na, Ca) bentonites with soda and MgO and their utilization as drilling mud. Appl. Clay Sci. 48 (2010) 398-404.
DOI: 10.1016/j.clay.2010.01.013
Google Scholar
[35]
P. Souza Santos, Ciência e tecnologia de argilas. 2ed. Edgard Blücher Ltda, São Paulo, (1989).
Google Scholar
[36]
P. Souza Santos, Ciência e Tecnologia de Argilas. 2ed. Edgard Blücher Ltda, São Paulo, (1992).
Google Scholar
[37]
R.A. Paz, A.M.D. Leite, E.M. Araújo, T.J. A . Melo, L.A. Pessan, F.R. Passador, Propriedades mecânicas e reológicas de nanocompósitos de poliamida 6 com argila organofílica nacional. Polímeros. 23 (2013) 682-689.
DOI: 10.4322/polimeros.2013.060
Google Scholar
[38]
K.M. Medeiros, V.N. Medeiros, D.D.S. Morais, L.R. Kojuch, E.M. Araújo, H. L. Lira, Analysis of the efficiency of surface treatment of bentonite clay for application in polymeric membranes, Mater. Sci. Forum. 775-776 (2014) 493-497.
DOI: 10.4028/www.scientific.net/msf.775-776.493
Google Scholar
[39]
I.M. Kohan, Nylon plastics hanbook. Hanser Publishers. Munich Vienna, New York, (1995).
Google Scholar
[40]
E.B. Bezerra, A.M.D. Leite, E.M. Araújo, T.J. A. Melo, C.T. Cunha, L.F. Maia, Influence of the addition of polypropylene and compatibilizer in PA6 membranes obtained by phase inversion. Mater. Sci. Forum. 775-776 (2014) 173-177.
DOI: 10.4028/www.scientific.net/msf.775-776.173
Google Scholar
[41]
L.R. Kojuch, K.M. Medeiros, D.D.S. Morais, E.M. Araújo, H.L. Lira, Study of nanocomposites of polyamide 6. 6/national bentonite clay. Mater. Sci. Forum. 727-728 (2012) 894-898.
DOI: 10.4028/www.scientific.net/msf.727-728.894
Google Scholar
[42]
A.M.D. Leite, K.M. Medeiros, E.M. Araújo, L.F. Maia, H.L. Lira, R.A. Paz, Membranes from nylon6/regional bentonite clay. Mater. Sci. Forum. 660-661 (2010) 784-787.
DOI: 10.4028/www.scientific.net/msf.660-661.784
Google Scholar
[43]
R.R. Menezes, L.R.L. Melo, F.A.S. Fonseca, H.S. Ferreira, A.B. Martins, G.A. Neves, Caracterização de argilas bentoníticas do município de sussego. REMAP. 3 (2008) 36-43.
Google Scholar
[44]
A.P. Batista, R.R. Menezes, L.N. Marques, L.A. Campos, G.A. Neves, H.C. Ferreira, Caracterização de argilas bentoníticas de cubati-PB. REMAP. 4 (2009) 64-71.
DOI: 10.1590/s0366-69132009000400003
Google Scholar
[45]
R. Barbosa, D.D. Souza, E.M. Araújo, K.C. Nóbrega, T.J.A. Melo, Evaluation of the behavior of brazilian bentonite clays with different quantity of quaternary ammonium salt. Mater. Sci. Forum. 660-661 (2010) 765-770.
DOI: 10.4028/www.scientific.net/msf.660-661.765
Google Scholar
[46]
L.F. Maia, A.M.D. Leite, E.M. Araújo, H.L. Lira, R.A. Paz, Spectroscopic and difractional characteristics of membranes and polyamide 6/regional bentonite clay nanocomposites, Mater. Sci. Forum. 775-776 (2014) 168-172.
DOI: 10.4028/www.scientific.net/msf.775-776.168
Google Scholar
[47]
R.M. Silverstein, F.X. Webster, Spectrometric identication of organics compunds. 7Th ed, , Jonh Wiley & Sons, United States, (2005).
Google Scholar
[48]
K.M. Medeiros, E.M. Araújo, H.L. Lira, D.F. Lima, C.A.P. Lima, Hybrid membranes of polyamide applied in treatment of waste water. Mater Res. 20 (2017) 1-9.
DOI: 10.1590/1980-5373-mr-2016-0242
Google Scholar
[49]
Q. Wu, X. Liu, L.A. Berglund, FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites. Polymer. 43 (2002) 2445-2449.
DOI: 10.1016/s0032-3861(01)00810-2
Google Scholar
[50]
K.M. Medeiros, E.M. Araújo, H.L. Lira, D.F. Lima, C.A.P. Lima, Membranas microporosas híbridas assimétricas: influência da argila na morfologia das membranas. Matéria. 22 (2017) 1-10.
DOI: 10.1590/s1517-707620170002.0144
Google Scholar
[51]
J. Mcmurry, Química Orgânica. Combo: Tradução da 7a Edição Norte Americana (All Tasks). vol 1. Revisão Técnica Robson Mendes Matos. Cengage Learning, São Paulo, (2011).
Google Scholar
[52]
K.M. Medeiros, T.R.G. Silva, D.D.S. Morais, L.R. Kojuch, E.M. Araújo, H. L. Lira, Study of morphology membrane of polymeric nanocomposites obtained by phases inversion, Mater. Sci. Forum. 775-776 (2014) 498-503.
DOI: 10.4028/www.scientific.net/msf.775-776.498
Google Scholar
[53]
R.S.B. Ferreira, C.H.O. Pereira, R.A. Paz, A.M.D. Leite, E.M. Araújo, H.L. Lira, Influence of processing type in the morphology of membranes obtained from PA6/MMT nanocomposites, Adv. in Mater. Sci. and Eng. 2014 (2014) 1-5.
DOI: 10.1155/2014/659148
Google Scholar
[54]
A.M.D. Leite, E.M. Araújo, H.L. Lira, R.A. Paz, V.N. Medeiros, Obtenção de membranas microporosas a partir de nanocompósitos de poliamida6/argila nacional. parte 1: influência da presença da argila na morfologia das membranas. Polímeros. 19 (2009).
DOI: 10.1590/s0104-14282009000400005
Google Scholar
[55]
E. Picard, J.F. Gérard, E. Espuche, Water transport properties of polyamide 6 based nanocomposites prepared by melt blending: on the importance of the clay dispersion state on the water transport properties at high water activity. J. Membr. Sci. 313 (2008).
DOI: 10.1016/j.memsci.2008.01.011
Google Scholar
[56]
H.Y. Yu, Y. Kang, Y. Liu, B. Mi, Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: a novel approach to enhance membrane fouling resistance. J. Membr. Sci. 449 (2014) 50-57.
DOI: 10.1016/j.memsci.2013.08.022
Google Scholar
[57]
Y. Zhao, P. Zhang, J. Sun, C. Liu, L. Zhu, Y. Xu, Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfone-based copolymers as additive. J. Membr. Sci. 510 (2016) 306-313.
DOI: 10.1016/j.memsci.2016.03.006
Google Scholar
[58]
S. Panpanit, C. Visvanathan, The role of bentonite addition in UF flux enhancement mechanisms for oil/water emulsion, J. Membr. Sci. 184 (2001) 59-68.
DOI: 10.1016/s0376-7388(00)00609-8
Google Scholar
[59]
T.C. Carvalho, V.N. Medeiros, A.M.D. Leite, E.M. Araújo, H.L. Lira, Membranas de poliétersulfona/argila e sua permeabilidade à água. Matéria. 22 (2017) 1-10.
DOI: 10.1590/s1517-707620170002.0157
Google Scholar
[60]
T.S. Meiron, A. Marmur, I.S. Saguy, Contact angle measurement on rough surfaces. J. Colloid Interf. Sci. 274 (2004) 637-644.
DOI: 10.1016/j.jcis.2004.02.036
Google Scholar
[61]
W. Schmidt, D. Dourado, T.A. Botrel, Formação de emulsões e seu efeito na uniformidade de aplicação em quimigação. Eng. Rural. 15 (2004) 71-78.
Google Scholar
[62]
L.R. Kojuch, K.M. Medeiros, E.M. Araújo, H.L. Lira, Obtaining of polyamide 6. 6 plane membrane application in oil-water separation, Mater. Sci. Forum. 775-776 (2014) 460-464.
DOI: 10.4028/www.scientific.net/msf.775-776.460
Google Scholar
[63]
A. Motta, A.C. Borges, K. Esquerre, A. Kiperstok, Oil produced water treatment for oil removal by an integration of coalesce bed and microfiltration membrane processes, J. Membr. Sci. 469 (2014) 371-378.
DOI: 10.1016/j.memsci.2014.06.051
Google Scholar
[64]
P. Poletto, J. Duarte, M.B. Thürmer, V. Santos, M. Zeni, Characterization of Polyamide 66 membranes prepared by phase inversion using formic acid and hydrochloric acid such as solvents. Mater Res. 14 (2011) 547-551.
DOI: 10.1590/s1516-14392011005000087
Google Scholar
[65]
K.M. Medeiros, D.D.S. Morais, L.R. Kojuch, E.M. Araújo, H.L. Lira, Avaliação do comportamento térmico de membranas planas de poliamida/argila obtidas pela técnica de inversão de fases. REMAP. 8 (2013) 36-43.
DOI: 10.33448/rsd-v10i11.19605
Google Scholar
[66]
A.M.D. Leite, E.M. Araújo, H.L. Lira, R.A. Paz, V.N. Medeiros, Obtenção de membranas microporosas a partir de nanocompósitos de polimida 6/argila nacional. parte 2: avaliação microestrutural e de permeabilidade das membranas obtidas. Polímeros. 24 (2014).
DOI: 10.4322/polimeros.2013.051
Google Scholar
[67]
H. Wu, B. Tang, P. Wu, Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J. Membr. Sci. 428 (2013) 341-348.
DOI: 10.1016/j.memsci.2012.10.053
Google Scholar
[68]
J. Xu, X. Feng, C. Gao, Surface modification of thin-film-composite polyamide membranes for improved reverse osmosis performance. J. Membr. Sci. 370 (2011) 116-123.
DOI: 10.1016/j.memsci.2011.01.001
Google Scholar
[69]
R.V. Kumar, A.K. Ghoshal, G. Pugazhenthi, Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment. J. Membr. Sci. 490 (2015).
DOI: 10.1016/j.memsci.2015.04.066
Google Scholar
[70]
Information on http: /www. mma. gov. br/port/conama/legiabre. cfm?codlegi=646.
Google Scholar