Influence of Additives on Hybrids Membranes Morphology for Water Treatment

Article Preview

Abstract:

In this work, polyamide 6 membranes (PA6) and hybrids with 1, 3 and 5% of montmorillonite clay (MMT) were obtained, adding potassium chloride (KCl) and calcium chloride (CaCl2). These different additives are intended to promote formation and increase of the pores in the microporous membranes. The membranes in the form of thin films were prepared by the phase inversion technique, leading to flat selective barriers. The MMT clay was characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The membranes were characterized by XRD, FTIR, scanning electron microscopy (SEM), contact angle, water vapor permeation, flow measurements and yield. The clay XRD results showed characteristic peaks of bentonite containing accessory materials, as well as a peak at 5.93°, indicating the d001 basal interplanar distance of 14.95 Å of MMT. In the spectrum in the infrared region of the clay, it was observed the presence of hydroxyls inherent to the adsorbed water, as well as characteristic bands of Si-O-Si bonds and the octahedral layer of MMT. The viscosities of the solutions of PA6 and their hybrids with CaCl2 were higher compared to solutions containing KCl due the CaCl2 possess a bivalent ion with a high degree of hydration and a molecular mass higher than KCl. In addition, these salts promote formation of hydroxides that precipitate the particles of MMT, decreasing the viscosities with the increasing percentage of clay. By means of the X-ray diffraction, it was possible to perceive that the hybrid membranes with the inorganic salts suggest an exfoliated and/or partially exfoliated structure. From the results of the FTIR analysis the bands obtained in the PA6 membranes and its hybrids remained practically unchanged, as there was an increase in the clay content and the introduction of the inorganic salts. From the photomicrographs obtained by SEM, it was observed that the addition of clay in the hybrid membranes provided an increase in the number of pores with the gradual increase of the percentage of clay. While the addition of the inorganic salts (KCl and CaCl2) provided an increase in the pore size of the top surfaces of all membranes, by means of the contact angle, it was verified that the hybrid membranes presented smaller angles when compared to the PA6, probably, due to the superficial peculiarity of the clay to react with water. PA6 membranes with KCl and CaCl2 showed lower water vapor permeations as compared to hybrid membranes due to the increase in the size and quantity of pores presented on their top surfaces. The distilled water flow in the membranes initially showed a decrease and after 30 minutes a stability of the permeate flow due to a compression occurred in the membranes. The water-oil separation tests of the membranes with CaCl2, regardless of the pressure used, indicated a significant reduction of permeate oil with promising yields above 87% , presenting potential for the treatment of wastewater contaminated by oil.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 14)

Pages:

86-106

Citation:

Online since:

December 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.G.F. Cunha, M.C. Calijuri, Engenharia Ambiental. Conceitos, Tecnologia e Gestão. Elsevier Editora Ltda, Rio de Janeiro, (2013).

Google Scholar

[2] M.J. Geerken, M.N.W. Groenendijk, R.G.H. Lammertink, M. Wessling, Micro-fabricated metal nozzle plates used for water-in-oil and oil-in-water emulsification. J. Membr. Sci. 310 (2008) 374-383.

DOI: 10.1016/j.memsci.2007.11.008

Google Scholar

[3] A.Y. Khan, S. Talegaonkar, Z. Iqbal, F.J. Ahmed, R.K. Khar, Multiple emulsions: an overview. J. Curr. Drug Deliv. 3 (2006) 429-443.

DOI: 10.2174/156720106778559056

Google Scholar

[4] A.M.D. Leite, E.M. Araújo, V. N. Medeiros, R.A. Paz, H.L. Lira, Abbass Hashim. (Org. ). Advances in nanocomposite technology, Rijeka, Croatia: InTech Publishers, 2011, pp.115-130.

Google Scholar

[5] M. Mulder, Basic Principles of Membrane Technology, in Anonymous, Netherlands. 2nd Editions. Kluwer Academic Publishers, (1996).

Google Scholar

[6] H. Strathmann, L. Giorno, E. Drioli, An Introduction to Membrane Science and Technology. Italy: Rende, (2006).

Google Scholar

[7] B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J. Membr. Sci. 325 (2008) 427-437.

DOI: 10.1016/j.memsci.2008.08.007

Google Scholar

[8] P. Jacob, P. Phungsai, K. fukushi, C. Visvanathan, Direct contact membrane distillation for anaerobic effluent treatment. J. Membr. Sci. 475 (2015) 330-339.

DOI: 10.1016/j.memsci.2014.10.021

Google Scholar

[9] W. Ma, Z. Guo, J. Zhao, Q. Yu, F. Wang, J. Han, H. Pan, J. Yao, Q. Zhang, S.K. Samal, S.C. Smedt, C. Huang, Polyimide/cellulose acetate core/ shell electrospun fibrous membranes for oil-water separation. Sep. Purific. Technol. 177 (2017) 71-85.

DOI: 10.1016/j.seppur.2016.12.032

Google Scholar

[10] T. Belliacanta, P. Poletto, M.B. Thürmer, J. Duarte, A. Toscan, M. Zeni, Preparação e caracterização de membranas poliméricas a partir da blenda polisulfona/poliuretano. Polímeros. 21 (2011) 229-232.

DOI: 10.1590/s0104-14282011005000045

Google Scholar

[11] P. Poletto, J. Duarte, M.S. Lunkes, V. Santos, M. Zeni, Avaliação das características de transporte em membranas de poliamida 66 preparadas com diferentes solventes. Polímeros. 22 (2012) 273-277.

DOI: 10.1590/s0104-14282012005000041

Google Scholar

[12] M.V. Brami, Y. Oren, C. Linder, R. Bernstein, Nanofiltration properties of asymmetric membranes prepared by phase inversion of sulfonated nitro-polyphenylsulfone. Polymer. 111 (2017) 137-147.

DOI: 10.1016/j.polymer.2017.01.048

Google Scholar

[13] R.W. Baker, Membrane Technology and Application. Chichester: John Wiley & Sons Ltda, (2004).

Google Scholar

[14] P. Anadão, Ciência e Tecnologia de Membranas, Artliber Editora Ltda. São Paulo, (2010).

Google Scholar

[15] G. Choudalakis, A.D. Gotsis, Permeability of polymer/clay nanocomposites: a review. Eur Polym J. 45 (2009) 967-984.

DOI: 10.1016/j.eurpolymj.2009.01.027

Google Scholar

[16] J.P. Carisuelo, R. Gavara, P. Hernández-Muñoz, Diffusion modeling in polymer-clay nanocomposites for food packaging applications through finite element analysis of tem images. J. Membr. Sci. 482 (2015) 92-102.

DOI: 10.1016/j.memsci.2015.02.031

Google Scholar

[17] J. J. Burgos-Mármol, A. Patti, Unveiling the impact of nanoparticle size dispersity on the behavior of polymer nanocomposites. Polymer. 113 (2017) 92-104.

DOI: 10.1016/j.polymer.2017.01.081

Google Scholar

[18] L.B. Paiva, A.R. Morales, T.R. Guimarães, Propriedades mecânicas de nanocompósitos de polipropileno e montmorilonita organofílica. Polímeros. 16 (2006) 136-140.

DOI: 10.1590/s0104-14282006000200014

Google Scholar

[19] L.B. Paiva, A.R. Morales, F.R.V. Diaz, Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Cerâmica. 54 (2008) 213-226.

DOI: 10.1590/s0366-69132008000200012

Google Scholar

[20] A.M.W. Bulte, Nylon 4, 6 as membrane material: polymer crystallization during immersion precipitation. Netherlands, (1994).

DOI: 10.3990/1.9789090068848

Google Scholar

[21] T.M. Don, Y.C. Hsu, H.Y. Tai, E. Fu, L.P. Cheng, Preparation of bi-continuous macroporous polyamide copolymer membranes for cell culture, J. Membr. Sci. 415-416 (2012) 784-792.

DOI: 10.1016/j.memsci.2012.05.070

Google Scholar

[22] L.P. Cheng, D.J.L. Lin, C.L. Chang, C.K. Lee, Fine structure and crystallinity of nylon 66 membranes prepared by phase inversion in the water/formic acid/nylon 66 system. Eur Polym J. 42 (2006) 356-367.

DOI: 10.1016/j.eurpolymj.2005.07.007

Google Scholar

[23] N. Ma, J. Wei, R. Liao, C.Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis, J. Membr. Sci. 405-406 (2012) 149-157.

DOI: 10.1016/j.memsci.2012.03.002

Google Scholar

[24] H. Wu, B. Tang, P. Wu, Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J. Membr. Sci. 428 (2013) 341-348.

DOI: 10.1016/j.memsci.2012.10.053

Google Scholar

[25] D.S. Biron, P. Poletto, J. Duarte, M. Zeni, C.P. Bergmann, V. Santos, Preparation and characterization of PA66/alumina composite membrane. Mater Res. 18 (2015) 748-755.

DOI: 10.1590/1516-1439.004715

Google Scholar

[26] L. Huang, J.R. Mccutcheon, Hydrophilic nylon 6, 6 nanofibers supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 457 (2007) 162-169.

DOI: 10.1016/j.memsci.2014.01.040

Google Scholar

[27] J. Espeso, A.E. Lozano, J.G. Campa, J. Abajo, Effect of substituents on the permeation properties of polyamide membranes. J. Membr. Sci. 280 (2006) 659-665.

DOI: 10.1016/j.memsci.2006.02.023

Google Scholar

[28] A.C. Habert, C.P. Borges, R. Nóbrega, Processo de separação com membranas. 1a ed. E-papers Serviços Editoriais Ltda, Rio de Janeiro, (2006).

Google Scholar

[29] ASTM, ASTM E 96/E 96M-05 - Standard test methods for water vapor transmission of materials, Philadelphia, (2005).

Google Scholar

[30] V.N. Medeiros, T.C. Carvalho, A.M.D. Leite, E.M. Araújo, H.L. Lira, Evaluation of the effect of clay in polyethersulfone membranes, Des. Water Treat. 56 (2015) 3554-3560.

DOI: 10.1080/19443994.2014.993724

Google Scholar

[31] Manual Petrobras. Manual do sistema de gestão da qualidade e SMS do GLAF. Determinação do teor de óleo e graxa por espectrofotometria de absorção molecular, (2000).

DOI: 10.47749/t/unicamp.1995.95154

Google Scholar

[32] D. Shriver, M. Weller, T. Overton, Jonathan Rourke, F. Armstrong. Inorganic Chemistry. Sixth ed. Macmillan Learning. New York, (2014).

Google Scholar

[33] K.M. Medeiros, D.F. Lima, C.A.P. Lima, E.M. Araújo, H.L. Lira, V.N. Medeiros, Development of polymer membranes modified with a porogenic agent. Mater. Sci. Forum. 869 (2016) 815-819.

DOI: 10.4028/www.scientific.net/msf.869.815

Google Scholar

[34] C. Karaguzel, T. Çetinel, F. Boylu, H. Çinku, M.S. Celik, Activation of (Na, Ca) bentonites with soda and MgO and their utilization as drilling mud. Appl. Clay Sci. 48 (2010) 398-404.

DOI: 10.1016/j.clay.2010.01.013

Google Scholar

[35] P. Souza Santos, Ciência e tecnologia de argilas. 2ed. Edgard Blücher Ltda, São Paulo, (1989).

Google Scholar

[36] P. Souza Santos, Ciência e Tecnologia de Argilas. 2ed. Edgard Blücher Ltda, São Paulo, (1992).

Google Scholar

[37] R.A. Paz, A.M.D. Leite, E.M. Araújo, T.J. A . Melo, L.A. Pessan, F.R. Passador, Propriedades mecânicas e reológicas de nanocompósitos de poliamida 6 com argila organofílica nacional. Polímeros. 23 (2013) 682-689.

DOI: 10.4322/polimeros.2013.060

Google Scholar

[38] K.M. Medeiros, V.N. Medeiros, D.D.S. Morais, L.R. Kojuch, E.M. Araújo, H. L. Lira, Analysis of the efficiency of surface treatment of bentonite clay for application in polymeric membranes, Mater. Sci. Forum. 775-776 (2014) 493-497.

DOI: 10.4028/www.scientific.net/msf.775-776.493

Google Scholar

[39] I.M. Kohan, Nylon plastics hanbook. Hanser Publishers. Munich Vienna, New York, (1995).

Google Scholar

[40] E.B. Bezerra, A.M.D. Leite, E.M. Araújo, T.J. A. Melo, C.T. Cunha, L.F. Maia, Influence of the addition of polypropylene and compatibilizer in PA6 membranes obtained by phase inversion. Mater. Sci. Forum. 775-776 (2014) 173-177.

DOI: 10.4028/www.scientific.net/msf.775-776.173

Google Scholar

[41] L.R. Kojuch, K.M. Medeiros, D.D.S. Morais, E.M. Araújo, H.L. Lira, Study of nanocomposites of polyamide 6. 6/national bentonite clay. Mater. Sci. Forum. 727-728 (2012) 894-898.

DOI: 10.4028/www.scientific.net/msf.727-728.894

Google Scholar

[42] A.M.D. Leite, K.M. Medeiros, E.M. Araújo, L.F. Maia, H.L. Lira, R.A. Paz, Membranes from nylon6/regional bentonite clay. Mater. Sci. Forum. 660-661 (2010) 784-787.

DOI: 10.4028/www.scientific.net/msf.660-661.784

Google Scholar

[43] R.R. Menezes, L.R.L. Melo, F.A.S. Fonseca, H.S. Ferreira, A.B. Martins, G.A. Neves, Caracterização de argilas bentoníticas do município de sussego. REMAP. 3 (2008) 36-43.

Google Scholar

[44] A.P. Batista, R.R. Menezes, L.N. Marques, L.A. Campos, G.A. Neves, H.C. Ferreira, Caracterização de argilas bentoníticas de cubati-PB. REMAP. 4 (2009) 64-71.

DOI: 10.1590/s0366-69132009000400003

Google Scholar

[45] R. Barbosa, D.D. Souza, E.M. Araújo, K.C. Nóbrega, T.J.A. Melo, Evaluation of the behavior of brazilian bentonite clays with different quantity of quaternary ammonium salt. Mater. Sci. Forum. 660-661 (2010) 765-770.

DOI: 10.4028/www.scientific.net/msf.660-661.765

Google Scholar

[46] L.F. Maia, A.M.D. Leite, E.M. Araújo, H.L. Lira, R.A. Paz, Spectroscopic and difractional characteristics of membranes and polyamide 6/regional bentonite clay nanocomposites, Mater. Sci. Forum. 775-776 (2014) 168-172.

DOI: 10.4028/www.scientific.net/msf.775-776.168

Google Scholar

[47] R.M. Silverstein, F.X. Webster, Spectrometric identication of organics compunds. 7Th ed, , Jonh Wiley & Sons, United States, (2005).

Google Scholar

[48] K.M. Medeiros, E.M. Araújo, H.L. Lira, D.F. Lima, C.A.P. Lima, Hybrid membranes of polyamide applied in treatment of waste water. Mater Res. 20 (2017) 1-9.

DOI: 10.1590/1980-5373-mr-2016-0242

Google Scholar

[49] Q. Wu, X. Liu, L.A. Berglund, FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites. Polymer. 43 (2002) 2445-2449.

DOI: 10.1016/s0032-3861(01)00810-2

Google Scholar

[50] K.M. Medeiros, E.M. Araújo, H.L. Lira, D.F. Lima, C.A.P. Lima, Membranas microporosas híbridas assimétricas: influência da argila na morfologia das membranas. Matéria. 22 (2017) 1-10.

DOI: 10.1590/s1517-707620170002.0144

Google Scholar

[51] J. Mcmurry, Química Orgânica. Combo: Tradução da 7a Edição Norte Americana (All Tasks). vol 1. Revisão Técnica Robson Mendes Matos. Cengage Learning, São Paulo, (2011).

Google Scholar

[52] K.M. Medeiros, T.R.G. Silva, D.D.S. Morais, L.R. Kojuch, E.M. Araújo, H. L. Lira, Study of morphology membrane of polymeric nanocomposites obtained by phases inversion, Mater. Sci. Forum. 775-776 (2014) 498-503.

DOI: 10.4028/www.scientific.net/msf.775-776.498

Google Scholar

[53] R.S.B. Ferreira, C.H.O. Pereira, R.A. Paz, A.M.D. Leite, E.M. Araújo, H.L. Lira, Influence of processing type in the morphology of membranes obtained from PA6/MMT nanocomposites, Adv. in Mater. Sci. and Eng. 2014 (2014) 1-5.

DOI: 10.1155/2014/659148

Google Scholar

[54] A.M.D. Leite, E.M. Araújo, H.L. Lira, R.A. Paz, V.N. Medeiros, Obtenção de membranas microporosas a partir de nanocompósitos de poliamida6/argila nacional. parte 1: influência da presença da argila na morfologia das membranas. Polímeros. 19 (2009).

DOI: 10.1590/s0104-14282009000400005

Google Scholar

[55] E. Picard, J.F. Gérard, E. Espuche, Water transport properties of polyamide 6 based nanocomposites prepared by melt blending: on the importance of the clay dispersion state on the water transport properties at high water activity. J. Membr. Sci. 313 (2008).

DOI: 10.1016/j.memsci.2008.01.011

Google Scholar

[56] H.Y. Yu, Y. Kang, Y. Liu, B. Mi, Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: a novel approach to enhance membrane fouling resistance. J. Membr. Sci. 449 (2014) 50-57.

DOI: 10.1016/j.memsci.2013.08.022

Google Scholar

[57] Y. Zhao, P. Zhang, J. Sun, C. Liu, L. Zhu, Y. Xu, Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfone-based copolymers as additive. J. Membr. Sci. 510 (2016) 306-313.

DOI: 10.1016/j.memsci.2016.03.006

Google Scholar

[58] S. Panpanit, C. Visvanathan, The role of bentonite addition in UF flux enhancement mechanisms for oil/water emulsion, J. Membr. Sci. 184 (2001) 59-68.

DOI: 10.1016/s0376-7388(00)00609-8

Google Scholar

[59] T.C. Carvalho, V.N. Medeiros, A.M.D. Leite, E.M. Araújo, H.L. Lira, Membranas de poliétersulfona/argila e sua permeabilidade à água. Matéria. 22 (2017) 1-10.

DOI: 10.1590/s1517-707620170002.0157

Google Scholar

[60] T.S. Meiron, A. Marmur, I.S. Saguy, Contact angle measurement on rough surfaces. J. Colloid Interf. Sci. 274 (2004) 637-644.

DOI: 10.1016/j.jcis.2004.02.036

Google Scholar

[61] W. Schmidt, D. Dourado, T.A. Botrel, Formação de emulsões e seu efeito na uniformidade de aplicação em quimigação. Eng. Rural. 15 (2004) 71-78.

Google Scholar

[62] L.R. Kojuch, K.M. Medeiros, E.M. Araújo, H.L. Lira, Obtaining of polyamide 6. 6 plane membrane application in oil-water separation, Mater. Sci. Forum. 775-776 (2014) 460-464.

DOI: 10.4028/www.scientific.net/msf.775-776.460

Google Scholar

[63] A. Motta, A.C. Borges, K. Esquerre, A. Kiperstok, Oil produced water treatment for oil removal by an integration of coalesce bed and microfiltration membrane processes, J. Membr. Sci. 469 (2014) 371-378.

DOI: 10.1016/j.memsci.2014.06.051

Google Scholar

[64] P. Poletto, J. Duarte, M.B. Thürmer, V. Santos, M. Zeni, Characterization of Polyamide 66 membranes prepared by phase inversion using formic acid and hydrochloric acid such as solvents. Mater Res. 14 (2011) 547-551.

DOI: 10.1590/s1516-14392011005000087

Google Scholar

[65] K.M. Medeiros, D.D.S. Morais, L.R. Kojuch, E.M. Araújo, H.L. Lira, Avaliação do comportamento térmico de membranas planas de poliamida/argila obtidas pela técnica de inversão de fases. REMAP. 8 (2013) 36-43.

DOI: 10.33448/rsd-v10i11.19605

Google Scholar

[66] A.M.D. Leite, E.M. Araújo, H.L. Lira, R.A. Paz, V.N. Medeiros, Obtenção de membranas microporosas a partir de nanocompósitos de polimida 6/argila nacional. parte 2: avaliação microestrutural e de permeabilidade das membranas obtidas. Polímeros. 24 (2014).

DOI: 10.4322/polimeros.2013.051

Google Scholar

[67] H. Wu, B. Tang, P. Wu, Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J. Membr. Sci. 428 (2013) 341-348.

DOI: 10.1016/j.memsci.2012.10.053

Google Scholar

[68] J. Xu, X. Feng, C. Gao, Surface modification of thin-film-composite polyamide membranes for improved reverse osmosis performance. J. Membr. Sci. 370 (2011) 116-123.

DOI: 10.1016/j.memsci.2011.01.001

Google Scholar

[69] R.V. Kumar, A.K. Ghoshal, G. Pugazhenthi, Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment. J. Membr. Sci. 490 (2015).

DOI: 10.1016/j.memsci.2015.04.066

Google Scholar

[70] Information on http: /www. mma. gov. br/port/conama/legiabre. cfm?codlegi=646.

Google Scholar