On the Self - and Impurity Diffusion in High Entropy Alloys

Article Preview

Abstract:

General trends in self- and impurity diffusion data are analyzed in high entropy alloys. Our analysis is based on the similarity of inter-atomic potentials in metals, which is in fact equivalent to a three-parameter description of the system (the mass, m, the lattice spacing, a, and the melting point, Tm, are only used). This leads to the so-called law of corresponding states in metals, manifested in many empirical rules (e.g. compensation laws or the proportionality between the self-diffusion activation energy and the melting point) if one uses dimensionless/reduced variables (like the homologous temperature: T*=T/Tm). It was shown in our previous papers, using the concept of a hypothetical crystal composed of simple atomic species whose properties are an average of the components, that the tracer diffusion of any species (let it be either one of the constituent atoms or a foreign atom) can be considered as impurity diffusion in the pure many-component matrix. Using this concept, we illustrate that the diffusion coefficients, Di, follow the same rule which obtained for impurity diffusion in pure metals: lnDi=A(T*)(Tmi/Tm-1)+r, with the same fitting parameters A(T*) and r. According to this, the diffusion of the constituent elements in high entropy alloys indeed shows some sluggish character, which can be attributed to a more or less temperature independent factor.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 17)

Pages:

105-114

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.-W. Yeh, JOM, 65 1759 (2013).

Google Scholar

[2] B. Murty, J.-W. Yeh, S. Ranganathan, High-entropy Alloys, Butterworth-Heinemann, (2014).

Google Scholar

[3] Y. Zhang, J.-W. Yeh, J.F. Sun, J.P. Lin, K.-F. Yao, Adv. Mater. Sci. Eng. 2015 (2015) 1.

Google Scholar

[4] H.K.D.H. Bhadeshia, Mater. Sci.Technol. 31 1139 (2015).

Google Scholar

[5] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 1 (2014).

Google Scholar

[6] Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen, Y. Liu, Y. Ren, N. Li, P.K. Liaw, MATER. RES. LETT. 3 203 (2015).

Google Scholar

[7] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Metall. Mater. Trans. A36 881 (2005).

Google Scholar

[8] D.B. Miracle, O.N. Senkov, Acta Mater. 122 448 (2017).

Google Scholar

[9] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61 4887 (2013).

Google Scholar

[10] K. Kulkarni, G.P.S. Chauhan, AIP Adv. 5 97162 (2015).

Google Scholar

[11] D.L. Beke, G. Erdélyi, Mater. Lett. 164 111 (2016).

Google Scholar

[12] M. Zajusz, J. Dabrowa, M. Danielewski, Scr. Mater. 138 48 (2017).

Google Scholar

[13] M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, J. Alloy. Compd. 688 994 (2016).

Google Scholar

[14] A. Paul, Philos. Mag. 93 2297 (2013).

Google Scholar

[15] A. Paul, Scr. Mater. 135 153 (2017).

Google Scholar

[16] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Scr. Mater. 135 158 (2017).

Google Scholar

[17] A.R. Allnatt, T.R. Paul, I.V. Belova, G.E. Murch, Philos. Mag. 96 2969 (2016).

Google Scholar

[18] T.R. Paul, I.V. Belova, G.E. Murch, Mater. Chem. Phys. 210 301 (2018).

Google Scholar

[19] M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Sci. Rep. 7 12293 (2017).

Google Scholar

[20] J. Dabrowa, W. Kucza, G. Cieslak, T. Kulik, M. Danielewski, J.W. Yeh, J. Alloy. Compd. 674 455 (2016).

Google Scholar

[21] C. Zhang, F. Zhang, K. Jin, H. Bei, S. Chen, W. Cao, J. Zhu, D. Lv, J Phase Equilib Diffus. 38 434 (2017).

Google Scholar

[22] K. Jin, C. Zhang, F. Zhang, H. Bei, MAT. RES. LETT. 6 293 (2018).

Google Scholar

[23] M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Acta Mater. 146 211 (2018).

Google Scholar

[24] J.R. Manning, Phys. Rev. B4 1111 (1971).

Google Scholar

[25] S. Rothman, L. Nowicki, G. Murch, J. Phys. F Met. 10 383 (1980).

Google Scholar

[26] D. L. Beke, G. Erdélyi, F. J. Kedves, J of Phys Chem Sol. 42 163 (1981).

Google Scholar

[27] D.L. Beke, Def. and Diff. Forum 66-69 172 (1989).

Google Scholar

[28] D.L. Beke. Def. and Diff. Forum 83 31 (1992).

Google Scholar

[29] J. de Boer, J., Physica XIV 139 (1948).

Google Scholar

[30] T. Geszti, Phys. Letters 29A 425 (1969).

Google Scholar

[31] C. Domb, Suppl. Il Nuovo Cimento IX, 9 (1958).

Google Scholar

[32] C. Zener, J. Appl. Phys. 22 327 (1951).

Google Scholar

[33] J.O. Hirschfelder, C.F., Curtis, R.B., Bird: Molecular Theory of Gases and Liquids,, John Wiley, New York, (1954).

Google Scholar

[34] C.M Focken: Dimensional Methods and their Applications,, Edward Arnold and Co., London, (1953).

Google Scholar

[35] A.D. Le Claire, in Diffusion in bcc metals,, American Society for Metals, Ohio, 1965, p.7.

Google Scholar

[36] G.J. Dienes, J Appl. Phys. 21 1189 (1950).

Google Scholar

[37] D.L. Beke. T. Geszti, G. Erdélyi, Z. Metallkde. 68 (1977) 445.

Google Scholar

[38] D.L. Beke, F.J. Kedves, Z. Metallkde. 74 (1983) 239.

Google Scholar

[39] D.L. Beke, I. Gödény, F.J Kedves, J Phys. Chem. Sol. 40 543 (1979).

Google Scholar

[40] X. Yang, Y. Zhang, Mater. Chem. Phys. 132 233 (2012).

Google Scholar

[41] D.L. Beke, I. Uzonyi, F.J. Kedves, Philos. Mag. A44 983 (1981).

Google Scholar

[42] G. Erdélyi, D. L. Beke, F.J. Kedves, I. Gödény, Phil. Mag. B38 (1978) 445.

Google Scholar

[43] D. L. Beke, I. Gödény, I. A. Szabó, G. Erdélyi, F. J. Kedves, Phil. Mag. A55 (1987) 425.

Google Scholar