Role of Atomic Transport Kinetic on Nano-Film Solid State Growth

Article Preview

Abstract:

Nanostructures used to build current technology devices are generally based on the stack of several thin films (from few nanometer-thick to micrometer-thick layers) having different physical properties (conductors, semiconductors, dielectrics, etc.). In order to build such devices, thin film fabrication processes compatible with the entire device fabrication need to be developed (each subsequent process step should not deteriorate the previous construction). Solid-state reactive diffusion allows thin film exhibiting good interfacial properties (mechanical, electrical…) to be produced. In this case, the film of interest is grown from the reaction of an initial layer with the substrate on which it has been deposited, during controlled thermal annealing. In the case of the reaction of a nano-layer (thickness < 100 nm) with a semi-infinite substrate, nanoscale effects can be observed: i) the phases appear sequentially, ii) not all the thermodynamic stable phases appear in the sequence (some phases are missing), and iii) some phases are transient (they disappear as fast as they appear). The understanding of the driving forces controlling such nanoscale effects is highly desired in order to control the phase formation sequence, and to stabilize the phase of interest (for the targeted application) among all the phases appearing in the sequence.This chapter presents recent investigations concerning the influence of atomic transport on the nanoscale phenomena observed during nano-film reactive diffusion. The results suggest that nano-film solid-state reaction could be controlled by modifying atomic transport kinetics, allowing current processes based on thin-film reactive diffusion to be improved.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 17)

Pages:

115-146

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.G. Allen, M. Mehregany, R.T. Howe, S.D. Senturia, Microfabricated structures for the in situ measurement of residual stress, Young's modulus, and ultimate strain of thin films, Appl. Phys. Lett. 51 (1987) 241–243.

DOI: 10.1063/1.98460

Google Scholar

[2] J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals, J. Chem. Phys. 120 (2004) 10240–10246.

DOI: 10.1063/1.1737365

Google Scholar

[3] V. Fox, N. Renevier, D. Teer, J. Hampshire, V. Rigato, The structure of tribologically improved MoS2–metal composite coatings and their industrial applications, Surf. Coatings Technol. 116–119 (1999) 492–497.

DOI: 10.1016/s0257-8972(99)00193-0

Google Scholar

[4] M. Atik, P. de Lima Neto, L.A. Avaca, M.A. Aegerter, Sol-gel thin films for corrosion protection, Ceram. Int. 21 (1995) 403–406.

DOI: 10.1016/0272-8842(95)94466-n

Google Scholar

[5] M. Norouzi, A. Afrasiabi Garekani, Corrosion protection by zirconia-based thin films deposited by a sol–gel spin coating method, Ceram. Int. 40 (2014) 2857–2861.

DOI: 10.1016/j.ceramint.2013.10.027

Google Scholar

[6] J.Y. Bak, S.M. Yoon, Nonvolatile memory characteristics of thin-film transistors using hybrid gate stack composed of solution-processed indium-zinc-silicon oxide active channel and organic ferroelectric gate insulator, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 31 (2013) 040601.

DOI: 10.1116/1.4809996

Google Scholar

[7] P.-T. Liu, C.S. Huang, C.W. Chen, Nonvolatile low-temperature polycrystalline silicon thin-film-transistor memory devices with oxide-nitride-oxide stacks, Appl. Phys. Lett. 90 (2007) 182115.

DOI: 10.1063/1.2736293

Google Scholar

[8] S. Jeon, S. Park, I. Song, J.-H. Hur, J. Park, H. Kim, S. Kim, S. Kim, H. Yin, U. Chung, E. Lee, C. Kim, Nanometer-Scale Oxide Thin Film Transistor with Potential for High-Density Image Sensor Applications, ACS Appl. Mater. Interfaces. 3 (2011) 1–6.

DOI: 10.1021/am1009088

Google Scholar

[9] O. Chyan, T.N. Arunagiri, T. Ponnuswamy, Electrodeposition of Copper Thin Film on Ruthenium, J. Electrochem. Soc. 150 (2003) C347.

DOI: 10.1149/1.1565138

Google Scholar

[10] A. Adamczyk, M. Rokita, The structural studies of Ag containing TiO2–SiO2 gels and thin films deposited on steel, J. Mol. Struct. 1114 (2016) 171–180.

DOI: 10.1016/j.molstruc.2016.02.054

Google Scholar

[11] H. Tomaszewski, H. Poelman, D. Depla, D. Poelman, R. De Gryse, L. Fiermans, M.-F. Reyniers, G. Heynderickx, G.B. Marin, TiO2 films prepared by DC magnetron sputtering from ceramic targets, Vacuum. 68 (2002) 31–38.

DOI: 10.1016/s0042-207x(02)00279-8

Google Scholar

[12] T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, Fabrication of Cu2ZnSnS4 thin films by co-evaporation, Phys. Status Solidi. 3 (2006) 2844–2847.

DOI: 10.1002/pssc.200669631

Google Scholar

[13] C.S. Petersson, E.E. Baglin, L. Placa, C.Y. Wong, I. Introduction, Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds, J. Appl. Phys. 55 (1984) 4208–4218.

DOI: 10.1063/1.333021

Google Scholar

[14] W.W. Wu, K.C. Lu, C.W. Wang, H.Y. Hsieh, S.Y. Chen, Y.C. Chou, S.Y. Yu, L.J. Chen, K.N. Tu, Growth of multiple metal/semiconductor nanoheterostructures through point and line contact reactions., Nano Lett. 10 (2010).

DOI: 10.1021/nl101842w

Google Scholar

[15] K. Hoummada, I. Blum, D. Mangelinck, A. Portavoce, Composition measurement of the Ni-silicide transient phase by atom probe tomography, Appl. Phys. Lett. 96 (2010) 261904.

DOI: 10.1063/1.3457995

Google Scholar

[16] K.N. Tu, G. Ottaviani, U. Gösele, H. Föll, Intermetallic compound formation in thin‐film and in bulk samples of the Ni‐Si binary system, J. Appl. Phys. 54 (1983) 758–763.

DOI: 10.1063/1.332034

Google Scholar

[17] U. Gösele, K.N. Tu, Growth kinetics of planar binary diffusion couples: 'Thin‐film case'' versus ''bulk cases',, J. Appl. Phys. 53 (1982) 3252–3260.

DOI: 10.1063/1.331028

Google Scholar

[18] J.P. Gambino, E.G. Colgan, Silicides and ohmic contacts, Mater. Chem. Phys. 52 (1998) 99–146.

DOI: 10.1016/s0254-0584(98)80014-x

Google Scholar

[19] F. Panciera, K. Hoummada, M. Gregoire, M. Juhel, N. Bicais, D. Mangelinck, Three dimensional distributions of arsenic and platinum within NiSi contact and gate of an n-type transistor, Appl. Phys. Lett. 99 (2011) 051911–051914.

DOI: 10.1063/1.3616150

Google Scholar

[20] O. Abbes, A. Portavoce, V. Le Thanh, C. Girardeaux, L. Michez, Phase formation during Mn thin film reaction with Ge: Self-aligned germanide process for spintronics, Appl. Phys. Lett. 103 (2013) 172405.

DOI: 10.1063/1.4827100

Google Scholar

[21] M. El Kousseifi, K. Hoummada, T. Epicier, D. Mangelinck, Direct observation of NiSi lateral growth at the epitaxial θ-Ni2Si/Si(1 0 0) interface, Acta Mater. 99 (2015) 1–6.

DOI: 10.1016/j.actamat.2015.07.062

Google Scholar

[22] F. Nemouchi, D. Mangelinck, C. Bergman, P. Gas, U. Smith, Differential scanning calorimetry analysis of the linear parabolic growth of nanometric Ni silicide thin films on a Si substrate, Appl. Phys. Lett. 86 (2005) 041903–041906.

DOI: 10.1063/1.1852727

Google Scholar

[23] R.M. Walser, R.W. Bené, First phase nucleation in silicon–transition‐metal planar interfaces, Appl. Phys. Lett. 28 (1976) 624–625.

DOI: 10.1063/1.88590

Google Scholar

[24] F.M. d'Heurle, P. Gas, Kinetics of formation of silicides: A review, J. Mater. Res. 1 (1986) 205–221.

Google Scholar

[25] K. Hoummada, A. Portavoce, C. Perrin-Pellegrino, D. Mangelinck, C. Bergman, Differential scanning calorimetry measurements of kinetic factors involved in salicide process, Appl. Phys. Lett. 92 (2008) 133109–133113.

DOI: 10.1063/1.2905293

Google Scholar

[26] B.E. Deal, A.S. Grove, General Relationship for the Thermal Oxidation of Silicon, J. Appl. Phys. 36 (1965) 3770–3778.

Google Scholar

[27] U. Gösele, K.N. Tu, Growth kinetics of planar binary diffusion couples: 'Thin‐film case'' versus ''bulk cases',, J. Appl. Phys. 53 (1982) 3252–3260.

DOI: 10.1063/1.331028

Google Scholar

[28] V.I. Dybkov, Solid state reaction kinetics, IPMS Publications, Kyiv, (2013).

Google Scholar

[29] K. Hoummada, E. Cadel, D. Mangelinck, C. Perrin-Pellegrino, D. Blavette, B. Deconihout, First stages of the formation of Ni silicide by atom probe tomography, Appl. Phys. Lett. 89 (2006) 181905–181908.

DOI: 10.1063/1.2370501

Google Scholar

[30] P. Gas, F.M. d'Heurle, Formation of silicide thin films by solid state reaction, Appl. Surf. Sci. 73 (1993) 153–161.

Google Scholar

[31] Z. Balogh, Z. Erdélyi, D.L. Beke, G.A. Langer, A. Csik, H.-G. Boyen, U. Wiedwald, P. Ziemann, A. Portavoce, C. Girardeaux, Transition from anomalous kinetics toward Fickian diffusion for Si dissolution into amorphous Ge, Appl. Phys. Lett. 92 (2008) 143104.

DOI: 10.1063/1.2908220

Google Scholar

[32] T. Barge, P. Gas, F.M. d'Heurle, Analysis of the diffusion controlled growth of cobalt silicides in bulk and thin film couples, J. Mater. Res. 10 (1995) 1134–1145.

DOI: 10.1557/jmr.1995.1134

Google Scholar

[33] F.M. d'Heurle, Nucleation of a new phase from the interaction of two adjacent phases: Some silicides, J. Mater. Res. 3 (1988) 167–195.

DOI: 10.1557/jmr.1988.0167

Google Scholar

[34] B.A. William Johnson, R.F. M E H L, M. Aime, Reaction Kinetics in Processes of Nucleation and Growth, Metals Technology Volume VI, (1939).

Google Scholar

[35] M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, J. Chem. Phys. 9 (1941) 177–184.

DOI: 10.1063/1.1750872

Google Scholar

[36] G.L. Olson, J.A. Roth, Kinetics of solid phase crystallization in amorphous silicon, Mater. Sci. Reports. 3 (1988) 1–77.

Google Scholar

[37] D.L. Beke, Z. Erdélyi, Resolution of the diffusional paradox predicting infinitely fast kinetics on the nanoscale, Phys. Rev. B. 73 (2006) 035426.

DOI: 10.1103/physrevb.73.035426

Google Scholar

[38] C. Cserháti, Z. Balogh, A. Csik, G.A. Langer, Z. Erdélyi, G. Glodán, G.L. Katona, D.L. Beke, I. Zizak, N. Darowski, E. Dudzik, R. Feyerherm, Linear growth kinetics of nanometric silicides in Co/amorphous-Si and Co/CoSi/amorphous-Si thin films, J. Appl. Phys. 104 (2008) 024311.

DOI: 10.1063/1.2957071

Google Scholar

[39] Z. Erdélyi, G.L. Katona, D.L. Beke, Nonparabolic nanoscale shift of phase boundaries in binary systems with restricted solubility, Phys. Rev. B. 69 (2004) 113407.

DOI: 10.1103/physrevb.69.113407

Google Scholar

[40] Z. Erdelyi, M. Sladecek, L.-M. Stadler, I. Zizak, G.A. Langer, M. Kis-Varga, D.L. Beke, B. Sepiol, Transient Interface Sharpening in Miscible Alloys, Science (80-. ). 306 (2004) 1913–1915.

DOI: 10.1126/science.1104400

Google Scholar

[41] G.L. Katona, Z. Erdélyi, D.L. Beke, C. Dietrich, F. Weigl, H.-G. Boyen, B. Koslowski, P. Ziemann, Experimental evidence for a nonparabolic nanoscale interface shift during the dissolution of Ni into bulk Au(111), Phys. Rev. B. 71 (2005) 115432.

DOI: 10.1103/physrevb.71.115432

Google Scholar

[42] A. Portavoce, G. Tréglia, Physical origin of thickness-controlled sequential phase formation during reactive diffusion: Atomistic modeling, Phys. Rev. B. 82 (2010) 205431.

DOI: 10.1103/physrevb.82.205431

Google Scholar

[43] K.N. Tu, G. Ottaviani, R.D. Thompson, J.W. Mayer, Thermal stability and growth kinetics of Co 2 Si and CoSi in thin‐film reactions, J. Appl. Phys. 53 (1982) 4406–4410.

DOI: 10.1063/1.331223

Google Scholar

[44] S.S. Lau, J.W. Mayer, K.N. Tu, Interactions in the Co/Si thin‐film system. I. Kinetics, J. Appl. Phys. 49 (1978) 4005–4010.

DOI: 10.1063/1.325359

Google Scholar

[45] C.-D. Lien, M.-A. Nicolet, C.S. Pai, S.S. Lau, Growth of Co-Silicides from single crystal and evaporated Si, Appl. Phys. A Solids Surfaces. 36 (1985) 153–157.

DOI: 10.1007/bf00624936

Google Scholar

[46] A. Portavoce, Organisation atomique en surface et en volume : Etudes appliquées aux procédés de fabrication de nanostructures hors équilibre, HDR Thesis, Aix-Marseille University, (2012).

Google Scholar

[47] A. Portavoce, G. Tréglia, Theoretical investigation of the influence of reaction and diffusion kinetics upon thin-film reactive diffusion, Phys. Rev. B. 85 (2012) 224101.

DOI: 10.1103/physrevb.85.224101

Google Scholar

[48] Z. Erdélyi, D.L. Beke, G.A. Langer, A. Csik, C. Cserháti, Z. Balogh, Interface kinetics and morphology on the nanoscale, Vacuum. 84 (2009) 26–31.

DOI: 10.1016/j.vacuum.2009.04.005

Google Scholar

[49] M. El Kousseifi, K. Hoummada, D. Mangelinck, Ni silicide study at the atomic scale: Diffusing species, relaxation and grooving mechanisms, Acta Mater. 83 (2015) 488–498.

DOI: 10.1016/j.actamat.2014.10.029

Google Scholar

[50] A. Portavoce, B. Lalmi, G. Tréglia, C. Girardeaux, D. Mangelinck, B. Aufray, J. Bernardini, Subnanometric Si film reactive diffusion on Ni, Appl. Phys. Lett. 95 (2009) 023111.

DOI: 10.1063/1.3177187

Google Scholar

[51] C. Lavoie, F.M. Heurle, C. Detavernier, C.C. Jr., T owards implementation of a nickel silicide process for CMOS technologies, Microelectron. Eng. 70 (2003) 144–157.

DOI: 10.1016/s0167-9317(03)00380-0

Google Scholar

[52] D. Mangelinck, K. Hoummada, I. Blum, Kinetics of a transient silicide during the reaction of Ni thin film with (100)Si, Appl. Phys. Lett. 95 (2009) 181902–181905.

DOI: 10.1063/1.3257732

Google Scholar

[53] C. Lavoie, F.M. d'Heurle, C. Detavernier, C. Cabral, Towards implementation of a nickel silicide process for CMOS technologies, Microelectron. Eng. 70 (2003) 144–157.

DOI: 10.1016/s0167-9317(03)00380-0

Google Scholar

[54] G. Ottaviani, Review of binary alloy formation by thin film interactions, J. Vac. Sci. Technol. 16 (1979) 1112–1119.

Google Scholar

[55] C. Canali, G. Majni, G. Ottaviani, G. Celotti, Phase diagrams and metal‐rich silicide formation, J. Appl. Phys. 50 (1979) 255–258.

DOI: 10.1063/1.325626

Google Scholar

[56] E.A. Guliants, W.A. Anderson, L.P. Guo, V.V. Guliants, Transmission electron microscopy study of Ni silicides formed during metal-induced silicon growth, Thin Solid Films. 385 (2001) 74–80.

DOI: 10.1016/s0040-6090(00)01916-7

Google Scholar

[57] H. Giordano, B. Aufray, Segregation and dissolution kinetics of SbCu(111) at 673 K: experiment and simulation, Surf. Sci. 352–354 (1996) 280–284.

DOI: 10.1016/0039-6028(95)01147-1

Google Scholar

[58] J. Perrin Toinin, K. Hoummada, M. Bertoglio, A. Portavoce, Origin of the first-phase selection during thin film reactive diffusion: Experimental and theoretical insights into the Pd-Ge system, Scr. Mater. 122 (2016) 22–25.

DOI: 10.1016/j.scriptamat.2016.05.008

Google Scholar

[59] G. Ottaviani, C. Canali, G. Ferrari, R. Ferrari, G. Majni, M. Prudenziati, S.S. Lau, Growth kinetics of Pd2Ge and PdGe on single-crystal and evaporated germanium, Thin Solid Films. 47 (1977) 187–194.

DOI: 10.1016/0040-6090(77)90359-5

Google Scholar

[60] F.A. Geenen, W. Knaepen, K. De Keyser, K. Opsomer, R.L. Vanmeirhaeghe, J. Jordan-Sweet, C. Lavoie, C. Detavernier, Formation and texture of palladium germanides studied by in situ X-ray diffraction and pole figure measurements, Thin Solid Films. 551 (2014) 86–91.

DOI: 10.1016/j.tsf.2013.11.007

Google Scholar

[61] T. Shimozaki, E. Yoshimura, Y. Wakamatsu, M. Onishi, Reactive Diffusion in Bulk Pt/Si Diffusion Couple, Mater. Trans. JIM. 36 (1995) 1112–1117.

DOI: 10.2320/matertrans1989.36.1112

Google Scholar

[62] L. Ley, Y. Wang, V.N. Van, S. Fisson, D. Souche, G. Vuye, J. Rivory, Initial stages in the formation of PtSi on Si(111) as followed by photoemission and spectroscopic ellipsometry, Thin Solid Films. 270 (1995) 561–566.

DOI: 10.1016/0040-6090(95)06860-0

Google Scholar

[63] O. Abbes, K. Hoummada, D. Mangelinck, V. Carron, Formation of Pt silicide on doped Si: Kinetics and stress, Thin Solid Films. 542 (2013).

DOI: 10.1016/j.tsf.2013.07.023

Google Scholar

[64] F. Nemouchi, D. Mangelinck, C. Bergman, G. Clugnet, P. Gas, J.L. Lábár, Simultaneous growth of Ni5Ge3 and NiGe by reaction of Ni film with Ge, Appl. Phys. Lett. 89 (2006) 131920.

DOI: 10.1063/1.2358189

Google Scholar

[65] J. Perrin Toinin, A. Portavoce, M. Texier, M. Bertoglio, K. Hoummada, First stages of Pd/Ge reaction: Mixing effects and dominant diffusing species, Microelectron. Eng. 167 (2017) 52–57.

DOI: 10.1016/j.mee.2016.11.002

Google Scholar

[66] M. El Kousseifi, K. Hoummada, M. Bertoglio, D. Mangelinck, Selection of the first Ni silicide phase by controlling the Pt incorporation in the intermixed layer, Acta Mater. 106 (2016) 193–198.

DOI: 10.1016/j.actamat.2016.01.004

Google Scholar

[67] K. Hoummada, D. Mangelinck, E. Cadel, C. Perrin-Pellegrino, D. Blavette, B. Deconihout, Formation of Ni silicide at room temperature studied by laser atom probe tomography: Nucleation and lateral growth, Microelectron. Eng. 84 (2007) 2517–2522.

DOI: 10.1016/j.mee.2007.05.051

Google Scholar

[68] K. Hoummada, C. Perrin-Pellegrino, D. Mangelinck, Effect of Pt addition on Ni silicide formation at low temperature: Growth, redistribution, and solubility, J. Appl. Phys. 106 (2009) 1–9.

DOI: 10.1063/1.3204948

Google Scholar

[69] K. De Keyser, C. Van Bockstael, R.L. Van Meirhaeghe, C. Detavernier, E. Verleysen, H. Bender, W. Vandervorst, J.J. Sweet, C. Lavoie, Phase formation and thermal stability of ultrathin nickel-silicides on Si(100), Appl. Phys. Lett. 96 (2010) 173503.

DOI: 10.1063/1.3384997

Google Scholar

[70] D. Mangelinck, K. Hoummada, A. Portavoce, C. Perrin, R. Daineche, M. Descoins, D.J. Larson, P.H. Clifton, Three-dimensional composition mapping of NiSi phase distribution and Pt diffusion via grain boundaries in Ni2Si, Scr. Mater. 62 (2010) 568–571.

DOI: 10.1016/j.scriptamat.2009.12.044

Google Scholar

[71] S. V. Divinski, G. Reglitz, G. Wilde, Grain boundary self-diffusion in polycrystalline nickel of different purity levels, Acta Mater. 58 (2010) 386–395.

DOI: 10.1016/j.actamat.2009.09.015

Google Scholar

[72] D. Prokoshkina, V.A. Esin, G. Wilde, S.V. Divinski, Grain boundary width, energy and self-diffusion in nickel: Effect of material purity, Acta Mater. 61 (2013) 5188–5197.

DOI: 10.1016/j.actamat.2013.05.010

Google Scholar

[73] L. Zhang, D.G. Ivey, Low temperature reactions of thin layers of Mn with Si, J. Mater. Res. 6 (1991) 1518–1531.

DOI: 10.1557/jmr.1991.1518

Google Scholar

[74] M. Eizenberg, K.N. Tu, Formation and Schottky behavior of manganese silicides on n ‐type silicon, J. Appl. Phys. 53 (1982) 6885–6890.

DOI: 10.1063/1.330029

Google Scholar

[75] F. Nava, S. Valeri, G. Majni, A. Cembali, G. Pignatel, G. Queirolo, The oxygen effect in the growth kinetics of platinum silicides, J. Appl. Phys. 52 (1981) 6641–6646.

DOI: 10.1063/1.328655

Google Scholar

[76] G. Bomchil, D. Bensahel, A. Golanski, F. Ferrieu, G. Auvert, A. Perio, J.C. Pfister, Formation kinetics of MoSi 2 induced by cw scanned laser beam, Appl. Phys. Lett. 41 (1982) 46–48.

DOI: 10.1063/1.93323

Google Scholar

[77] D. V. Howes, M. J. Morgan, Reliability and degradation: Semiconductor devices and circuits, Wiley-Interscience, New York., (1981).

Google Scholar

[78] J.M. Poate, T.C. Tisone, Kinetics and mechanism of platinum silicide formation on silicon, Appl. Phys. Lett. 24 (1974) 391–393.

DOI: 10.1063/1.1655230

Google Scholar

[79] J.O. Olowolafe, M.-A. Nicolet, J.W. Mayer, Influence of the nature of the Si substrate on nickel silicide formed from thin Ni films, Thin Solid Films. 38 (1976) 143–150.

DOI: 10.1016/0040-6090(76)90221-2

Google Scholar

[80] P. Knauth, A. Charaï, C. Bergman, P. Gas, Calorimetric analysis of thin-film reactions: Experiments and modeling in the nickel/silicon system, J. Appl. Phys. 76 (1994) 5195–5201.

DOI: 10.1063/1.357238

Google Scholar

[81] C. Comrie, D. Smeets, K. Pondo, C. van der Walt, J. Demeulemeester, W. Knaepen, C. Detavernier, A. Habanyama, A. Vantomme, Thin solid films., Thin Solid Films. 526 (2012) 261–268.

DOI: 10.1016/j.tsf.2012.10.113

Google Scholar

[82] K. Hoummada, C. Perrin-Pellegrino, D. Mangelinck, Effect of Pt addition on Ni silicide formation at low temperature: Growth, redistribution, and solubility, J. Appl. Phys. 106 (2009) 1–9.

DOI: 10.1063/1.3204948

Google Scholar

[83] A. Portavoce, P. Gas, I. Berbezier, A. Ronda, J.S. Christensen, A.Y. Kuznetsov, B.G. Svensson, Sb lattice diffusion in Si 1− x Gex/Si ( 001 ) heterostructures: Chemical and stress effects, Phys. Rev. B. 69 (2004) 155415.

DOI: 10.1103/physrevb.69.155415

Google Scholar

[84] A. Portavoce, P. Gas, I. Berbezier, A. Ronda, J.S. Christensen, B. Svensson, Lattice diffusion and surface segregation of B during growth of SiGe heterostructures by molecular beam epitaxy: Effect of Ge concentration and biaxial stress, J. Appl. Phys. 96 (2004) 3158–3163.

DOI: 10.1063/1.1781767

Google Scholar

[85] H. Mehrer, Diffusion in solids : fundamentals, methods, materials, diffusion-controlled processes, Springer, (2007).

Google Scholar

[86] D. Mangelinck, K. Hoummada, Effect of stress on the transformation of Ni2Si into NiSi, Appl. Phys. Lett. 92 (2008) 254101–254104.

DOI: 10.1063/1.2949751

Google Scholar

[87] F.M. d'Heurle and O. Thomas, Stresses during Silicide Formation: A Review, Defect Diffus. Forum. 129 (1996) 135.

Google Scholar

[88] L.C.F. K.N. Tu, J.W. Mayer, Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Macmillan, New York, 1992., (1992).

Google Scholar

[89] E. Kirkendall, L. Thomassen, and C. Upthegrove, Rates of Diffusion of Copper and Zinc in Alpha Brass, Trans. AIME. 133 (1939) 186–203.

Google Scholar

[90] E.O. Kirkendall, Diffusion of Zinc in Alpha Brass, Trans. AIME. 147 (1942) 104–110.

Google Scholar

[91] H. Lee, D. Vashaee, D.Z. Wang, M.S. Dresselhaus, Z.F. Ren, G. Chen, Effects of nanoscale porosity on thermoelectric properties of SiGe, J. Appl. Phys. 107 (2010) 094308-1.

DOI: 10.1063/1.3388076

Google Scholar

[92] T. Zhang, S. Wu, J. Xu, R. Zheng, G. Cheng, High thermoelectric figure-of-merits from large-area porous silicon nanowire arrays, Nano Energy. 13 (2015) 433–441.

DOI: 10.1016/j.nanoen.2015.03.011

Google Scholar

[93] A.U. Khan, K. Kobayashi, D.-M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y. Xue, B. Jiang, K. Tsuchiya, D. Golberg, Y. Bando, T. Mori, Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity, Nano Energy. 31 (2017) 152–159.

DOI: 10.1016/j.nanoen.2016.11.016

Google Scholar

[94] A. Portavoce, E. Assaf, C. Alvarez, M. Bertoglio, R. Clérac, K. Hoummada, C. Alfonso, A. Charaï, O. Pilone, K. Hahn, V. Dolocan, S. Bertaina, Ferromagnetic MnCoGe thin films produced via magnetron sputtering and non-diffusive reaction, Appl. Surf. Sci. 437 (2018) 336–346.

DOI: 10.1016/j.apsusc.2017.12.151

Google Scholar

[95] A. Portavoce, K. Hoummada, F. Dahlem, Influence of interfacial reaction upon atomic diffusion studied by in situ Auger electron spectroscopy, Surf. Sci. 624 (2014) 135–144.

DOI: 10.1016/j.susc.2014.02.011

Google Scholar

[96] L.G. Harrison, Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides, Trans. Faraday Soc. 57 (1961) 1191.

DOI: 10.1039/tf9615701191

Google Scholar

[97] J.M. Egan, C.M. Comrie, Self-diffusion of silicon in polycrystalline Pd2Si in the absence of growth, Phys. Rev. B. 40 (1989) 11670–11675.

DOI: 10.1103/physrevb.40.11670

Google Scholar

[98] R. Pretorius, C.L. Ramiller, M.-A. Nicolet, Marker studies of silicide formation, silicon self-diffusion and silicon epitaxy using radioactive silicon and Rutherford backscattering, Nucl. Instruments Methods. 149 (1978) 629–633.

DOI: 10.1016/0029-554x(78)90941-2

Google Scholar

[99] H. Föll, P.S. Ho, Transmission electron microscopy investigation of silicide formation on slightly oxidized silicon substrates, J. Appl. Phys. 52 (1981) 5510–5516.

DOI: 10.1063/1.329533

Google Scholar

[100] R. Pretorius, Studies of the Growth and Oxidation of Metal-Silicides Using Radioactive 31Si as Tracer, J. Electrochem. Soc. 128 (1981) 107.

DOI: 10.1149/1.2127348

Google Scholar

[101] C. ‐D. Lien, M. Nicolet, C.S. Pai, A structure marker study for Pd2Si formation: Pd moves in epitaxial Pd 2Si, J. Appl. Phys. 57 (1985) 224–226.

DOI: 10.1063/1.334792

Google Scholar

[102] W.K. Chu, S.S. Lau, J.W. Mayer, H. Müller, K.N. Tu, Implanted noble gas atoms as diffusion markers in silicide formation, Thin Solid Films. 25 (1975) 393–402.

DOI: 10.1016/0040-6090(75)90057-7

Google Scholar

[103] J.C. Ciccariello, S. Poize, P. Gas, Lattice and grain boundary self‐diffusion in Ni2Si: Comparison with thin‐film formation, J. Appl. Phys. 67 (1990) 3315–3322.

DOI: 10.1063/1.345367

Google Scholar

[104] R. Pretorius, A.P. Botha, Radioactive 31Si marker studies of metal silicide formation-computer simulation, Thin Solid Films. 91 (1982) 99–109.

DOI: 10.1016/0040-6090(82)90423-0

Google Scholar

[105] R.W. Bower, D. Sigurd, R.E. Scott, Formation kinetics and structure of Pd2Si films on Si, Solid. State. Electron. 16 (1973) 1461–1471.

DOI: 10.1016/0038-1101(73)90063-4

Google Scholar

[106] D.A. Antoniadis, I. Moskowitz, Diffusion of substitutional impurities in silicon at short oxidation times: An insight into point defect kinetics, J. Appl. Phys. 53 (1982) 6788–6796.

DOI: 10.1063/1.330067

Google Scholar

[107] P.M. Fahey, P.B. Griffin, J.D. Plummer, Point defects and dopant diffusion in silicon, Rev. Mod. Phys. 61 (1989) 289–384.

DOI: 10.1103/revmodphys.61.289

Google Scholar

[108] P. Kuo, J.L. Hoyt, J.F. Gibbons, J.E. Turner, D. Lefforge, Effects of Si thermal oxidation on B diffusion in Si and strained Si 1− x Ge x layers, Appl. Phys. Lett. 67 (1995) 706–708.

DOI: 10.1063/1.115281

Google Scholar

[109] P. Fahey, R.W. Dutton, M. Moslehi, Effect of thermal nitridation processes on boron and phosphorus diffusion in 〈100〉 silicon, Appl. Phys. Lett. 43 (1983) 683–685.

DOI: 10.1063/1.94445

Google Scholar

[110] S.B. Herner, V. Krishnamoorthy, K.S. Jones, T.K. Mogi, M.O. Thompson, H.-J. Gossmann, Extrinsic dislocation loop behavior in silicon with a thermally grown silicon nitride film, J. Appl. Phys. 81 (1998) 7175.

DOI: 10.1063/1.365316

Google Scholar

[111] M. Seibt, K. Graff, Characterization of haze‐forming precipitates in silicon, J. Appl. Phys. 63 (1988) 4444–4450.

DOI: 10.1063/1.340164

Google Scholar

[112] M. Ronay, R.G. Schad, New insight into silicide formation: The creation of silicon self-interstitials, Phys. Rev. Lett. 64 (1990) 2042–2045.

DOI: 10.1103/physrevlett.64.2042

Google Scholar

[113] J.E. Masse, P. Knauth, P. Gas, A. Charaï, Point defect creation induced by solid state reaction between nickel and silicon, J. Appl. Phys. 77 (1998) 934.

DOI: 10.1063/1.359021

Google Scholar

[114] S. Abhaya, G. Amarendra, G. Venugopal Rao, R. Rajaraman, B.K. Panigrahi, V.S. Sastry, Silicidation in Pd/Si thin film junction—Defect evolution and silicon surface segregation, Mater. Sci. Eng. B. 142 (2007) 62–68.

DOI: 10.1016/j.mseb.2007.06.024

Google Scholar