A Mystery of "Sluggish Diffusion" in High-Entropy Alloys: The Truth or a Myth?

Article Preview

Abstract:

High entropy alloys (HEAs) are considered as a novel class of materials with a large number of components (five and more) available in equiatomic or nearly equatomic proportions. One of the characteristic properties of HEAs was believed to be so-called 'sluggish' diffusion that should be crucial for intended high-temperature technological applications. The faith on this myth instead of rigorous experimental analysis played such a dominant role that the first set of data on interdi usion, in fact based on an improper analysis, were cited in hundreds of articles to state the presence of sluggishness of di usion rates in high entropy alloys.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 17)

Pages:

69-104

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] B.S. Murty, J.W. Yeh, S. Ranganathan, High-entropy alloys, Butterworth-Heinemann (2014).

Google Scholar

[3] L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nature Commun 6 (2015) 5964.

DOI: 10.1038/ncomms6964

Google Scholar

[4] Q.F. He, Z.Y. Ding, Y.F. Ye, Y. Yang, Design of high-entropy alloy: A perspective from nonideal mixing, JOM 69 (2017) 2092-(2098).

DOI: 10.1007/s11837-017-2452-1

Google Scholar

[5] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[6] Y. Linden, M. Pinkas, A. Munitz, L. Meshi, Long-period antiphase domains and short-range order in a B2 matrix of the AlCoCrFeNi high-entropy alloy, Scripta Materialia 139 (2017) 49-52.

DOI: 10.1016/j.scriptamat.2017.06.015

Google Scholar

[7] L. Rogal, P. Bobrowski, F. Körmann, S.V. Divinski, F. Stein, B. Grabowski, Computationallydriven engineering of sublattice ordering in a hexagonal AlHfScTiZr high entropy alloy, Scientific Reports 7 (2017) 2209.

DOI: 10.1038/s41598-017-02385-w

Google Scholar

[8] S. Singh, N. Wanderka, K. Kiefer, K. Siemensmeyer, J. Banhart, Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties, Ultramicroscopy. 111 (2011) 619-622.

DOI: 10.1016/j.ultramic.2010.12.001

Google Scholar

[9] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Materialia 96 (2015).

DOI: 10.1016/j.actamat.2015.06.025

Google Scholar

[10] F. Otto, A. Dlouh, K.G. Pradeep, M. Kubanova, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater. 112 (2016) 40-52.

DOI: 10.1016/j.actamat.2016.04.005

Google Scholar

[11] Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, P.K. Liaw, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mater. Sci. Eng. A. 647 (2015).

DOI: 10.1016/j.msea.2015.08.078

Google Scholar

[12] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature. 534 (2016) 227-230.

DOI: 10.1038/nature17981

Google Scholar

[13] D.B. Miracle, High-entropy alloys: A current evaluation of founding ideas and core effects and exploring nonlinear alloys,, JOM 69 (2017) 2130-2136.

DOI: 10.1007/s11837-017-2527-z

Google Scholar

[14] O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Accelerated exploration of multiprincipal element alloys with solid solution phases, Nature Comm. 6 (2015) 6529.

DOI: 10.1038/ncomms7529

Google Scholar

[15] Z. Li, D. Raabe, Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties, JOM 69 (2017) 2099-2106.

DOI: 10.1007/s11837-017-2540-2

Google Scholar

[16] H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Körmann, D. Raabe, Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment, Entropy 18 (2016) 321.

DOI: 10.3390/e18090321

Google Scholar

[17] G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J.P. Couzinie, L. Perriere, T. Chauveau, I. Guillot, Elastic and plastic properties of as-cast equimolar TiHfZrTaNb highentropy alloy, Mater Science Engineer A 654 (2016) 30-38.

DOI: 10.1016/j.msea.2015.12.017

Google Scholar

[18] L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, N.G. Jones, An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy, Acta Materialia 122 (2017) 11-18.

DOI: 10.1016/j.actamat.2016.09.032

Google Scholar

[19] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater. 61 (2013) 4887-4897.

DOI: 10.1016/j.actamat.2013.04.058

Google Scholar

[20] M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer (2016) p.516.

Google Scholar

[21] H.Y. Diao, R.Feng, K.A. Dahmen, P.K. Liaw, Fundamental deformation behavior in high-entropy alloys: An overview, Current Opinion Solid State and Materials Science, 21 (2017) 252-266.

DOI: 10.1016/j.cossms.2017.08.003

Google Scholar

[22] M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, JALCOM 688 (2016) 994-1001.

DOI: 10.1016/j.jallcom.2016.07.239

Google Scholar

[23] M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys, Scientific Reports 7 (2017) 12273.

DOI: 10.1038/s41598-017-12551-9

Google Scholar

[24] M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Materialia 146 (2018) 211-224. DOI: https://doi.org/10.1016/j.actamat.2017.12.052.

DOI: 10.1016/j.actamat.2017.12.052

Google Scholar

[25] D. Gaertner, Yu.I. Chumlyakov, G. Wilde, S.V. Divinski, Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high-antropy alloys, J Mater. Research (2018) (accepted).

DOI: 10.1557/jmr.2018.162

Google Scholar

[26] J. Kottke, D. Gaertner, M. Laurent-Brocq, L. Perriére, L. Rogal, S.V. Divinski, G. Wilde, On the appearance of a high-Entropy effect: Tracer diffusion and lattice parameters of Nix(CoCrFeMn)100−x (20≤x≤100, (in preparation).

DOI: 10.1016/j.scriptamat.2018.09.011

Google Scholar

[27] K. Kulkarni, G.P.S. Chauhan, Investigations of quaternary interdiffusion in a constituent system of high entropy alloys, AIP Adv. 5 (2015) 97162.

DOI: 10.1063/1.4931806

Google Scholar

[28] J. Dabrowa, W. Kucza, G. Cieslak, T. Kulik, M. Danielewski, J.W. Yeh, Interdiffusion in the FCCstructured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations, J. Alloys Compd. 674 (2016) 455-462.

DOI: 10.1016/j.jallcom.2016.03.046

Google Scholar

[29] V.M. Nadutov, V.F. Mazanko, S.Yu. Makarenko, Tracer Diffusion of Cobalt in HighEntropy Alloys AlxFeNiCoCuCr, Metallofiz. Noveishie Tekhnol. 39 (2017) 337-348.

DOI: 10.15407/mfint.39.03.0337

Google Scholar

[30] W. Kucza, J. Dabrowa, G. Cieslak, K. Berent, T. Kulik, M. Danielewski, Studies of sluggish diffusion, effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach, J All Comp 731 (2018) 920-928.

DOI: 10.1016/j.jallcom.2017.10.108

Google Scholar

[31] Q. Li, W. Chen, J. Zhong, L. Zhang, Q. Chen, Z.K. Liu, On Sluggish Diffusion in Fcc AlCo-Cr-Fe-Ni High-Entropy Alloys: An Experimental and Numerical Study, Metals 8 (2018) 16.

DOI: 10.3390/met8010016

Google Scholar

[32] K. Jin, C. Zhang, F. Zhang, H. Bei, Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys, Mater. Res. Lett. 6 (2018) 293-299. https://doi.org/10.1080/21663831.2018.1446466.

DOI: 10.1080/21663831.2018.1446466

Google Scholar

[33] D.L. Beke, G. Erdelyi, On the diffusion in high-entropy alloys, Mater. Lett. 164 (2016) 111-113.

Google Scholar

[34] A.R. Allnatt, T.R. Paul, I. V. Belova, G.E. Murch, A high accuracy diffusion kinetics formalism for random multicomponent alloys: application to high entropy alloys, Philos. Mag. 96 (2016) 2969-2985.

DOI: 10.1080/14786435.2016.1219785

Google Scholar

[35] T.R. Paul, I.V. Belova, E.V. Levchenko, A.V. Evteev, G.E. Murch, Diffusion Foundations 4 (2015) 25-54.

Google Scholar

[36] J.E. Morral, Body-Diagonal Diffusion Couples for High Entropy Alloys, J Phase Equil Diff 39 (2018) 51-56.

DOI: 10.1007/s11669-017-0606-z

Google Scholar

[37] L. Moleko, A. Allnatt, E. Allnatt, A self-consistent theory of matter transport in a random lattice gas and some simulation results, Philos. Mag. A 59 (1989) 141-160.

DOI: 10.1080/01418618908220335

Google Scholar

[38] A. Paul, A pseudobinary approach to study interdiffusion and the Kirkendall effect in multicomponent systems, Philosophical Magazine 93 (2013) 2297-2315.

DOI: 10.1080/14786435.2013.769692

Google Scholar

[39] A. Paul, T. Laurila, V. Vuorinen, S. Divinski, Themodynamics, Diffusion and Kirkendall Effect in Solids, Springer, Switzerland, (2014).

DOI: 10.1007/978-3-319-07461-0

Google Scholar

[40] L. Zhou, M.A. Dayananda, Y.H. Sohn, Chapter 4: Diffusion in Multicomponent Alloys, Handbook of Solid State Diffusion, Editors: A. Paul and S.V. Divinski, Volume 1: Diffusion Fundamentals and Techniques, Elsevier, The Netherlands (2017).

DOI: 10.1016/b978-0-12-804287-8.00004-x

Google Scholar

[41] A. Paul, Chapter 3: Estimation of Diffusion Coefficients in Binary and Pseudo-Binary Bulk Diffusion Couples, Handbook of Solid State Diffusion, Editors: A. Paul and S.V. Divinski, Volume 1: Diffusion Fundamentals and Techniques, Elsevier, The Netherlands (2017).

DOI: 10.1016/b978-0-12-804287-8.00003-8

Google Scholar

[42] V.A. Baheti and A. Paul, Development of different methods and their efficiencies for the estimation of diffusion coefficients following the diffusion couple technique, under review (2018).

DOI: 10.1016/j.actamat.2018.04.051

Google Scholar

[43] L.S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME 175 (1948) 184-201.

DOI: 10.1007/s11661-010-0177-7

Google Scholar

[44] J.R. Manning, Diffusion and Kirkendall shift in binary alloys, Acta metall. 15 (1967) 817.

DOI: 10.1016/0001-6160(67)90363-x

Google Scholar

[45] M.A. Dayananda, Y.H. Sohn, Average effective interdiffusion coefficients and their applications for isothermal multicomponent diffusion couples, Scripta materialia 35 (1996) 683-688.

DOI: 10.1016/1359-6462(96)00145-5

Google Scholar

[46] J. G. Duh, M. A. Dayananda, Interdiffusion in Fe-Ni-Cr Alloys at 1100◦C, Defect Diffusion Forum, 39 (1985) 1-50.

DOI: 10.4028/www.scientific.net/ddf.39.1

Google Scholar

[47] VD Divya, U Ramamurty, A Paul, Interdiffusion and solid solution strengthening in Ni-Co-Pt and Ni-Co-Fe ternary systems, Philosophical Magazine 93 (2013) 2190-2206.

DOI: 10.1080/14786435.2013.765987

Google Scholar

[48] K. Jin, C. Zhang, F. Zhang, H. Bei, Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid solution alloys, Mater Res Lett, 6 (2018) 293-299.

DOI: 10.1080/21663831.2018.1446466

Google Scholar

[49] S. Santra, A. Paul, Estimation of intrinsic diffusion coefficients in a pseudo-binary diffusion couple, Scripta Materialia 103 (2015) 18-21.

DOI: 10.1016/j.scriptamat.2015.02.027

Google Scholar

[50] P. Kiruthika, A. Paul, A pseudo-binary interdiffusion study in the ?-Ni (Pt) Al phase, Philosophical Magazine Letters 95 (2015) 138-144.

DOI: 10.1080/09500839.2015.1020904

Google Scholar

[51] S Tripathi, V Verma, TW Brown, KN Kulkarni, Effect of small amount of manganese on the interdiffusivities in Fe-Al alloys, Journal of Phase Equilibria and Diffusion 38 (2017)135-142.

DOI: 10.1007/s11669-017-0529-8

Google Scholar

[52] P Kiruthika, SK Makineni, C Srivastava, K Chattopadhyay, A Paul, Growth mechanism of the interdiffusion zone between platinum modified bond coats and single crystal superalloys, Acta Materialia 105 (2016) 438-448.

DOI: 10.1016/j.actamat.2015.12.014

Google Scholar

[53] A Paul, Comments on Sluggish diffusion in Co?Cr?Fe?Mn?Ni high-entropy alloys', Acta Materialia 61 (2013) 4887,-4897, Scripta Materialia 135 (2017) 153-157.

DOI: 10.1016/j.scriptamat.2017.03.026

Google Scholar

[54] K.Y. Tsai, M.H. Tsai, J.W. Yeh Reply to comments on Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys,, Scripta Materialia 135 (2017) 158-159.

DOI: 10.1016/j.scriptamat.2017.03.028

Google Scholar

[55] T.R. Paul, I.V. Belova, G.E. Murch, Analysis of diffusion in high entropy alloys, Mater Chem Phys 210 (2017) 301-308.

Google Scholar

[56] V. Verma, A. Tripathi, K.N. Kulkarni, On interdiffusion in FeNiCoCrMn high entropy alloy, Journal of Phase Equilibria and Diffusion 38 (2017) 445-456.

DOI: 10.1007/s11669-017-0579-y

Google Scholar

[57] N. Esakkiraja, A Paul, A novel concept of pseudo-ternary diffusion couple for the estimation of diffusion coefficients in multicomponent systems, Scripta Materialia 147 (2018) 79-82.

DOI: 10.1016/j.scriptamat.2018.01.002

Google Scholar

[58] W. Chen, J. Zhong, L. Zhang, An augmented numerical inverse method for determining the composition-dependent interdiffusivities in alloy systems by using a single diffusion couple, MRS Communications 6 (2016) 295-300.

DOI: 10.1557/mrc.2016.21

Google Scholar

[59] H. Mehrer, Diffusion in solid matter, Springer, Heidelberg (2007).

Google Scholar

[60] L.G. Harrison, Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides, Trans. Faraday Soc. 57 (1961) 1191.

DOI: 10.1039/tf9615701191

Google Scholar

[61] K. Maier, H. Mehrer, E. Lessmann, W. Schule, Self-diffusion in nickel at low-temperatures, Phys Status Solidi B 78 (1976) 689.

DOI: 10.1002/pssb.2220780230

Google Scholar

[62] S. V. Divinski, St. Frank, U. Södervall, Chr. Herzig, Solute Diffusion of Al-Substituting Elements in Ni3Al and the Diffusion Mechanism of the Minority Component, Acta mater. 46 (1998) 4369- 4380.

DOI: 10.1016/s1359-6454(98)00109-8

Google Scholar

[63] S.V. Divinski, G. Reglitz, G. Wilde, Grain boundary self-diffusion in polycrystalline nickel of different purity levels, Acta Mater. 58 (2010) 386-395.

DOI: 10.1016/j.actamat.2009.09.015

Google Scholar

[64] D. Prokoshkina, V. Esin, G. Wilde, S.V. Divinski, Grain boundary width, energy and self-diffusion in nickel: effect of material purity, Acta Mater 61 (2013) 5188-5197.

DOI: 10.1016/j.actamat.2013.05.010

Google Scholar

[65] St. Frank, Chr. Herzig, The effect of composition and temperature on grain boundary diffusion of Ni-63 in Ni3Al alloys, Mater. Sci. Engng. 239-240 (1997) 882.

DOI: 10.1016/s0921-5093(97)00679-5

Google Scholar

[66] S.V. Divinski, Chapter 10: Defects and diffusion in ordered compounds, Handbook of Solid State Diffusion, Editors: A. Paul and S.V. Divinski, Volume 1: Diffusion Fundamentals and Techniques, Elsevier, The Netherlands (2017).

DOI: 10.1016/b978-0-12-804287-8.00010-5

Google Scholar

[67] S.V. Divinski, F. Hisker, Chr. Herzig, R. Filipek, M. Danielewski, Self- and interdiffusion in ternary Cu-Fe-Ni alloys, Def. Diff. Forum 237-240 (2005) 50-61.

DOI: 10.4028/www.scientific.net/ddf.237-240.50

Google Scholar

[68] I.V. Belova, Y.H. Sohn, G.E. Murch, Measurement of tracer diffusion coefficients in an interdiffusion context for multicomponent alloys, Phil. Mag. Lett. 95 (2015) 416-424. http://dx.doi.org/10.1080/09500839.2015.1082660.

DOI: 10.1080/09500839.2015.1082660

Google Scholar

[69] I.V. Belova, N.S. Kulkarni, Y.H. Sohn, G.E. Murch, Simultaneous tracer diffusion and interdiffusion in a sandwich-type configuration to provide the composition dependence of the tracer diffusion coefficients, Phil. Mag. 94 (2014).

DOI: 10.1080/14786435.2014.965234

Google Scholar

[70] D. Gaertner, K. Abrahams, I. Steinbach, G. Wilde, S.V. Divinski, Concentration dependence of atomic mobilities in CoCrFeMnNi high-entropy alloys: experiment and theory, (2018) in preparation.

DOI: 10.1016/j.actamat.2018.12.033

Google Scholar

[71] S.V. Divinski, F. Hisker F, W. Löser, U. Södervall, Chr. Herzig, Ni radiotracer diffusion in B2 ordered NiFeAl alloys, Intermetallics 14 (2006) 308-314.

DOI: 10.1016/j.intermet.2005.06.007

Google Scholar

[72] S. V. Divinski, Y.-S. Kang, W. Löser, U. Södervall, Chr. Herzig, Ni and Fe Tracer Diffusion in Ni40Fe10Al50 Ternary Alloy, Intermetallics 12 (2004) 511.

DOI: 10.1016/j.intermet.2004.01.003

Google Scholar

[73] Chr. Herzig, T. Wilger, T. Przeorski, F. Hisker, S. V. Divinski, Titanium Tracer Diffusion in Grain Boundaries of α-Ti, α2-Ti3Al, and γ-TiAl and in α2/γ Interphase Boundaries, Intermetallics 9 (2001) 431.

DOI: 10.1016/s0966-9795(01)00022-x

Google Scholar

[74] V.T. Borisov, V.M. Golikov, G.Shcherbedinskii, Connection between diffusion coefficients and energies of grain boundaries, Fiz. Met. Met. 17 (1964) 881-885.

Google Scholar

[75] P. Guiraldenq, Diffusion intergranulaire et energie des joints de grains [Grain boundary diffusion and energy], J. Phys. C. 36 (1975) 201-211.

DOI: 10.1051/jphyscol:1975420

Google Scholar