[1]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
B.S. Murty, J.W. Yeh, S. Ranganathan, High-entropy alloys, Butterworth-Heinemann (2014).
Google Scholar
[3]
L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nature Commun 6 (2015) 5964.
DOI: 10.1038/ncomms6964
Google Scholar
[4]
Q.F. He, Z.Y. Ding, Y.F. Ye, Y. Yang, Design of high-entropy alloy: A perspective from nonideal mixing, JOM 69 (2017) 2092-(2098).
DOI: 10.1007/s11837-017-2452-1
Google Scholar
[5]
D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[6]
Y. Linden, M. Pinkas, A. Munitz, L. Meshi, Long-period antiphase domains and short-range order in a B2 matrix of the AlCoCrFeNi high-entropy alloy, Scripta Materialia 139 (2017) 49-52.
DOI: 10.1016/j.scriptamat.2017.06.015
Google Scholar
[7]
L. Rogal, P. Bobrowski, F. Körmann, S.V. Divinski, F. Stein, B. Grabowski, Computationallydriven engineering of sublattice ordering in a hexagonal AlHfScTiZr high entropy alloy, Scientific Reports 7 (2017) 2209.
DOI: 10.1038/s41598-017-02385-w
Google Scholar
[8]
S. Singh, N. Wanderka, K. Kiefer, K. Siemensmeyer, J. Banhart, Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties, Ultramicroscopy. 111 (2011) 619-622.
DOI: 10.1016/j.ultramic.2010.12.001
Google Scholar
[9]
B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Materialia 96 (2015).
DOI: 10.1016/j.actamat.2015.06.025
Google Scholar
[10]
F. Otto, A. Dlouh, K.G. Pradeep, M. Kubanova, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater. 112 (2016) 40-52.
DOI: 10.1016/j.actamat.2016.04.005
Google Scholar
[11]
Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, P.K. Liaw, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mater. Sci. Eng. A. 647 (2015).
DOI: 10.1016/j.msea.2015.08.078
Google Scholar
[12]
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature. 534 (2016) 227-230.
DOI: 10.1038/nature17981
Google Scholar
[13]
D.B. Miracle, High-entropy alloys: A current evaluation of founding ideas and core effects and exploring nonlinear alloys,, JOM 69 (2017) 2130-2136.
DOI: 10.1007/s11837-017-2527-z
Google Scholar
[14]
O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Accelerated exploration of multiprincipal element alloys with solid solution phases, Nature Comm. 6 (2015) 6529.
DOI: 10.1038/ncomms7529
Google Scholar
[15]
Z. Li, D. Raabe, Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties, JOM 69 (2017) 2099-2106.
DOI: 10.1007/s11837-017-2540-2
Google Scholar
[16]
H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Körmann, D. Raabe, Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment, Entropy 18 (2016) 321.
DOI: 10.3390/e18090321
Google Scholar
[17]
G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J.P. Couzinie, L. Perriere, T. Chauveau, I. Guillot, Elastic and plastic properties of as-cast equimolar TiHfZrTaNb highentropy alloy, Mater Science Engineer A 654 (2016) 30-38.
DOI: 10.1016/j.msea.2015.12.017
Google Scholar
[18]
L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, N.G. Jones, An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy, Acta Materialia 122 (2017) 11-18.
DOI: 10.1016/j.actamat.2016.09.032
Google Scholar
[19]
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater. 61 (2013) 4887-4897.
DOI: 10.1016/j.actamat.2013.04.058
Google Scholar
[20]
M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer (2016) p.516.
Google Scholar
[21]
H.Y. Diao, R.Feng, K.A. Dahmen, P.K. Liaw, Fundamental deformation behavior in high-entropy alloys: An overview, Current Opinion Solid State and Materials Science, 21 (2017) 252-266.
DOI: 10.1016/j.cossms.2017.08.003
Google Scholar
[22]
M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, JALCOM 688 (2016) 994-1001.
DOI: 10.1016/j.jallcom.2016.07.239
Google Scholar
[23]
M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys, Scientific Reports 7 (2017) 12273.
DOI: 10.1038/s41598-017-12551-9
Google Scholar
[24]
M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Materialia 146 (2018) 211-224. DOI: https://doi.org/10.1016/j.actamat.2017.12.052.
DOI: 10.1016/j.actamat.2017.12.052
Google Scholar
[25]
D. Gaertner, Yu.I. Chumlyakov, G. Wilde, S.V. Divinski, Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high-antropy alloys, J Mater. Research (2018) (accepted).
DOI: 10.1557/jmr.2018.162
Google Scholar
[26]
J. Kottke, D. Gaertner, M. Laurent-Brocq, L. Perriére, L. Rogal, S.V. Divinski, G. Wilde, On the appearance of a high-Entropy effect: Tracer diffusion and lattice parameters of Nix(CoCrFeMn)100−x (20≤x≤100, (in preparation).
DOI: 10.1016/j.scriptamat.2018.09.011
Google Scholar
[27]
K. Kulkarni, G.P.S. Chauhan, Investigations of quaternary interdiffusion in a constituent system of high entropy alloys, AIP Adv. 5 (2015) 97162.
DOI: 10.1063/1.4931806
Google Scholar
[28]
J. Dabrowa, W. Kucza, G. Cieslak, T. Kulik, M. Danielewski, J.W. Yeh, Interdiffusion in the FCCstructured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations, J. Alloys Compd. 674 (2016) 455-462.
DOI: 10.1016/j.jallcom.2016.03.046
Google Scholar
[29]
V.M. Nadutov, V.F. Mazanko, S.Yu. Makarenko, Tracer Diffusion of Cobalt in HighEntropy Alloys AlxFeNiCoCuCr, Metallofiz. Noveishie Tekhnol. 39 (2017) 337-348.
DOI: 10.15407/mfint.39.03.0337
Google Scholar
[30]
W. Kucza, J. Dabrowa, G. Cieslak, K. Berent, T. Kulik, M. Danielewski, Studies of sluggish diffusion, effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach, J All Comp 731 (2018) 920-928.
DOI: 10.1016/j.jallcom.2017.10.108
Google Scholar
[31]
Q. Li, W. Chen, J. Zhong, L. Zhang, Q. Chen, Z.K. Liu, On Sluggish Diffusion in Fcc AlCo-Cr-Fe-Ni High-Entropy Alloys: An Experimental and Numerical Study, Metals 8 (2018) 16.
DOI: 10.3390/met8010016
Google Scholar
[32]
K. Jin, C. Zhang, F. Zhang, H. Bei, Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys, Mater. Res. Lett. 6 (2018) 293-299. https://doi.org/10.1080/21663831.2018.1446466.
DOI: 10.1080/21663831.2018.1446466
Google Scholar
[33]
D.L. Beke, G. Erdelyi, On the diffusion in high-entropy alloys, Mater. Lett. 164 (2016) 111-113.
Google Scholar
[34]
A.R. Allnatt, T.R. Paul, I. V. Belova, G.E. Murch, A high accuracy diffusion kinetics formalism for random multicomponent alloys: application to high entropy alloys, Philos. Mag. 96 (2016) 2969-2985.
DOI: 10.1080/14786435.2016.1219785
Google Scholar
[35]
T.R. Paul, I.V. Belova, E.V. Levchenko, A.V. Evteev, G.E. Murch, Diffusion Foundations 4 (2015) 25-54.
Google Scholar
[36]
J.E. Morral, Body-Diagonal Diffusion Couples for High Entropy Alloys, J Phase Equil Diff 39 (2018) 51-56.
DOI: 10.1007/s11669-017-0606-z
Google Scholar
[37]
L. Moleko, A. Allnatt, E. Allnatt, A self-consistent theory of matter transport in a random lattice gas and some simulation results, Philos. Mag. A 59 (1989) 141-160.
DOI: 10.1080/01418618908220335
Google Scholar
[38]
A. Paul, A pseudobinary approach to study interdiffusion and the Kirkendall effect in multicomponent systems, Philosophical Magazine 93 (2013) 2297-2315.
DOI: 10.1080/14786435.2013.769692
Google Scholar
[39]
A. Paul, T. Laurila, V. Vuorinen, S. Divinski, Themodynamics, Diffusion and Kirkendall Effect in Solids, Springer, Switzerland, (2014).
DOI: 10.1007/978-3-319-07461-0
Google Scholar
[40]
L. Zhou, M.A. Dayananda, Y.H. Sohn, Chapter 4: Diffusion in Multicomponent Alloys, Handbook of Solid State Diffusion, Editors: A. Paul and S.V. Divinski, Volume 1: Diffusion Fundamentals and Techniques, Elsevier, The Netherlands (2017).
DOI: 10.1016/b978-0-12-804287-8.00004-x
Google Scholar
[41]
A. Paul, Chapter 3: Estimation of Diffusion Coefficients in Binary and Pseudo-Binary Bulk Diffusion Couples, Handbook of Solid State Diffusion, Editors: A. Paul and S.V. Divinski, Volume 1: Diffusion Fundamentals and Techniques, Elsevier, The Netherlands (2017).
DOI: 10.1016/b978-0-12-804287-8.00003-8
Google Scholar
[42]
V.A. Baheti and A. Paul, Development of different methods and their efficiencies for the estimation of diffusion coefficients following the diffusion couple technique, under review (2018).
DOI: 10.1016/j.actamat.2018.04.051
Google Scholar
[43]
L.S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME 175 (1948) 184-201.
DOI: 10.1007/s11661-010-0177-7
Google Scholar
[44]
J.R. Manning, Diffusion and Kirkendall shift in binary alloys, Acta metall. 15 (1967) 817.
DOI: 10.1016/0001-6160(67)90363-x
Google Scholar
[45]
M.A. Dayananda, Y.H. Sohn, Average effective interdiffusion coefficients and their applications for isothermal multicomponent diffusion couples, Scripta materialia 35 (1996) 683-688.
DOI: 10.1016/1359-6462(96)00145-5
Google Scholar
[46]
J. G. Duh, M. A. Dayananda, Interdiffusion in Fe-Ni-Cr Alloys at 1100◦C, Defect Diffusion Forum, 39 (1985) 1-50.
DOI: 10.4028/www.scientific.net/ddf.39.1
Google Scholar
[47]
VD Divya, U Ramamurty, A Paul, Interdiffusion and solid solution strengthening in Ni-Co-Pt and Ni-Co-Fe ternary systems, Philosophical Magazine 93 (2013) 2190-2206.
DOI: 10.1080/14786435.2013.765987
Google Scholar
[48]
K. Jin, C. Zhang, F. Zhang, H. Bei, Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid solution alloys, Mater Res Lett, 6 (2018) 293-299.
DOI: 10.1080/21663831.2018.1446466
Google Scholar
[49]
S. Santra, A. Paul, Estimation of intrinsic diffusion coefficients in a pseudo-binary diffusion couple, Scripta Materialia 103 (2015) 18-21.
DOI: 10.1016/j.scriptamat.2015.02.027
Google Scholar
[50]
P. Kiruthika, A. Paul, A pseudo-binary interdiffusion study in the ?-Ni (Pt) Al phase, Philosophical Magazine Letters 95 (2015) 138-144.
DOI: 10.1080/09500839.2015.1020904
Google Scholar
[51]
S Tripathi, V Verma, TW Brown, KN Kulkarni, Effect of small amount of manganese on the interdiffusivities in Fe-Al alloys, Journal of Phase Equilibria and Diffusion 38 (2017)135-142.
DOI: 10.1007/s11669-017-0529-8
Google Scholar
[52]
P Kiruthika, SK Makineni, C Srivastava, K Chattopadhyay, A Paul, Growth mechanism of the interdiffusion zone between platinum modified bond coats and single crystal superalloys, Acta Materialia 105 (2016) 438-448.
DOI: 10.1016/j.actamat.2015.12.014
Google Scholar
[53]
A Paul, Comments on Sluggish diffusion in Co?Cr?Fe?Mn?Ni high-entropy alloys', Acta Materialia 61 (2013) 4887,-4897, Scripta Materialia 135 (2017) 153-157.
DOI: 10.1016/j.scriptamat.2017.03.026
Google Scholar
[54]
K.Y. Tsai, M.H. Tsai, J.W. Yeh Reply to comments on Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys,, Scripta Materialia 135 (2017) 158-159.
DOI: 10.1016/j.scriptamat.2017.03.028
Google Scholar
[55]
T.R. Paul, I.V. Belova, G.E. Murch, Analysis of diffusion in high entropy alloys, Mater Chem Phys 210 (2017) 301-308.
Google Scholar
[56]
V. Verma, A. Tripathi, K.N. Kulkarni, On interdiffusion in FeNiCoCrMn high entropy alloy, Journal of Phase Equilibria and Diffusion 38 (2017) 445-456.
DOI: 10.1007/s11669-017-0579-y
Google Scholar
[57]
N. Esakkiraja, A Paul, A novel concept of pseudo-ternary diffusion couple for the estimation of diffusion coefficients in multicomponent systems, Scripta Materialia 147 (2018) 79-82.
DOI: 10.1016/j.scriptamat.2018.01.002
Google Scholar
[58]
W. Chen, J. Zhong, L. Zhang, An augmented numerical inverse method for determining the composition-dependent interdiffusivities in alloy systems by using a single diffusion couple, MRS Communications 6 (2016) 295-300.
DOI: 10.1557/mrc.2016.21
Google Scholar
[59]
H. Mehrer, Diffusion in solid matter, Springer, Heidelberg (2007).
Google Scholar
[60]
L.G. Harrison, Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides, Trans. Faraday Soc. 57 (1961) 1191.
DOI: 10.1039/tf9615701191
Google Scholar
[61]
K. Maier, H. Mehrer, E. Lessmann, W. Schule, Self-diffusion in nickel at low-temperatures, Phys Status Solidi B 78 (1976) 689.
DOI: 10.1002/pssb.2220780230
Google Scholar
[62]
S. V. Divinski, St. Frank, U. Södervall, Chr. Herzig, Solute Diffusion of Al-Substituting Elements in Ni3Al and the Diffusion Mechanism of the Minority Component, Acta mater. 46 (1998) 4369- 4380.
DOI: 10.1016/s1359-6454(98)00109-8
Google Scholar
[63]
S.V. Divinski, G. Reglitz, G. Wilde, Grain boundary self-diffusion in polycrystalline nickel of different purity levels, Acta Mater. 58 (2010) 386-395.
DOI: 10.1016/j.actamat.2009.09.015
Google Scholar
[64]
D. Prokoshkina, V. Esin, G. Wilde, S.V. Divinski, Grain boundary width, energy and self-diffusion in nickel: effect of material purity, Acta Mater 61 (2013) 5188-5197.
DOI: 10.1016/j.actamat.2013.05.010
Google Scholar
[65]
St. Frank, Chr. Herzig, The effect of composition and temperature on grain boundary diffusion of Ni-63 in Ni3Al alloys, Mater. Sci. Engng. 239-240 (1997) 882.
DOI: 10.1016/s0921-5093(97)00679-5
Google Scholar
[66]
S.V. Divinski, Chapter 10: Defects and diffusion in ordered compounds, Handbook of Solid State Diffusion, Editors: A. Paul and S.V. Divinski, Volume 1: Diffusion Fundamentals and Techniques, Elsevier, The Netherlands (2017).
DOI: 10.1016/b978-0-12-804287-8.00010-5
Google Scholar
[67]
S.V. Divinski, F. Hisker, Chr. Herzig, R. Filipek, M. Danielewski, Self- and interdiffusion in ternary Cu-Fe-Ni alloys, Def. Diff. Forum 237-240 (2005) 50-61.
DOI: 10.4028/www.scientific.net/ddf.237-240.50
Google Scholar
[68]
I.V. Belova, Y.H. Sohn, G.E. Murch, Measurement of tracer diffusion coefficients in an interdiffusion context for multicomponent alloys, Phil. Mag. Lett. 95 (2015) 416-424. http://dx.doi.org/10.1080/09500839.2015.1082660.
DOI: 10.1080/09500839.2015.1082660
Google Scholar
[69]
I.V. Belova, N.S. Kulkarni, Y.H. Sohn, G.E. Murch, Simultaneous tracer diffusion and interdiffusion in a sandwich-type configuration to provide the composition dependence of the tracer diffusion coefficients, Phil. Mag. 94 (2014).
DOI: 10.1080/14786435.2014.965234
Google Scholar
[70]
D. Gaertner, K. Abrahams, I. Steinbach, G. Wilde, S.V. Divinski, Concentration dependence of atomic mobilities in CoCrFeMnNi high-entropy alloys: experiment and theory, (2018) in preparation.
DOI: 10.1016/j.actamat.2018.12.033
Google Scholar
[71]
S.V. Divinski, F. Hisker F, W. Löser, U. Södervall, Chr. Herzig, Ni radiotracer diffusion in B2 ordered NiFeAl alloys, Intermetallics 14 (2006) 308-314.
DOI: 10.1016/j.intermet.2005.06.007
Google Scholar
[72]
S. V. Divinski, Y.-S. Kang, W. Löser, U. Södervall, Chr. Herzig, Ni and Fe Tracer Diffusion in Ni40Fe10Al50 Ternary Alloy, Intermetallics 12 (2004) 511.
DOI: 10.1016/j.intermet.2004.01.003
Google Scholar
[73]
Chr. Herzig, T. Wilger, T. Przeorski, F. Hisker, S. V. Divinski, Titanium Tracer Diffusion in Grain Boundaries of α-Ti, α2-Ti3Al, and γ-TiAl and in α2/γ Interphase Boundaries, Intermetallics 9 (2001) 431.
DOI: 10.1016/s0966-9795(01)00022-x
Google Scholar
[74]
V.T. Borisov, V.M. Golikov, G.Shcherbedinskii, Connection between diffusion coefficients and energies of grain boundaries, Fiz. Met. Met. 17 (1964) 881-885.
Google Scholar
[75]
P. Guiraldenq, Diffusion intergranulaire et energie des joints de grains [Grain boundary diffusion and energy], J. Phys. C. 36 (1975) 201-211.
DOI: 10.1051/jphyscol:1975420
Google Scholar