Diffusion and Point Defects in Elemental Semiconductors

Article Preview

Abstract:

Elemental semiconductors play an important role in high-technology equipment used in industry and everyday life. The first transistors were made in the 1950ies of germanium. Later silicon took over because its electronic band-gap is larger. Nowadays, germanium is the base material mainly for γ-radiation detectors. Silicon is the most important semiconductor for the fabrication of solid-state electronic devices (memory chips, processors chips, ...) in computers, cellphones, smartphones. Silicon is also important for photovoltaic devices of energy production.Diffusion is a key process in the fabrication of semiconductor devices. This chapter deals with diffusion and point defects in silicon and germanium. It aims at making the reader familiar with the present understanding rather than painstakingly presenting all diffusion data available a good deal of which may be found in a data collection by Stolwijk and Bracht [1], in the author’s textbook [2], and in recent review papers by Bracht [3, 4]. We mainly review self-diffusion, diffusion of doping elements, oxygen diffusion, and diffusion modes of hybrid foreign elements in elemental semiconductors.Self-diffusion in elemental semiconductors is a very slow process compared to metals. One of the reasons is that the equilibrium concentrations of vacancies and self-interstitials are low. In contrast to metals, point defects in semiconductors exist in neutral and in charged states. The concentrations of charged point defects are therefore affected by doping [2 - 4].

You might also be interested in these eBooks

Info:

[1] N.A. Stolwijk and H. Bracht, Diffusion in Silicon, Germanium and their Alloys, Landolt Börnstein, New Series, Vol. III/33, Subvolume A, Springer, New York, (1998).

Google Scholar

[2] H. Mehrer, Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-controlled Processes, Springer Series of Solid State Sciences 155, Springer-Verlag Berlin Heidelberg (2007).

DOI: 10.1007/978-3-540-71488-0

Google Scholar

[3] H. Bracht, Self- and Dopant Diffusion in Silicon, Germanium and their Alloys, Chapt.6, pp.159-215 in: Silicon, Germanium, and their Alloys: Growth, Defects, Impurities, and Nanocrystals, G. Kissinger and S. Pizzini (Eds.),, Taylor & Francis, London, (2014).

DOI: 10.1201/b17868-10

Google Scholar

[4] H. Bracht, Diffusion and Point Defects in Silicon Materials, Chapt.1 in: Defects and Impurities in Silicon Materials (eds. Y. Yoshida, G. Langouche, Springer Japan (2015).

DOI: 10.1007/978-4-431-55800-2_1

Google Scholar

[5] A.D. Smigelskas, E.O. Kirkendall, Trans. AIME 147, 130 (1947).

Google Scholar

[6] R.O. Simmons, R.W. Balluffi, Phys. Rev. 125, 52 (1960).

Google Scholar

[7] H.-E. Schaefer, R. Gugelmaier, M. Schmolz, A. Seeger, J. Materials Science Forum 15-18, 111 (1987).

Google Scholar

[8] U. Gösele, W. Frank, A. Seeger, Appl. Phys. A 23, 361 (1980).

Google Scholar

[9] M. Werner, H. Mehrer, H.D. Hochheimer, Phys. Rev. B32, 3930 (1985).

Google Scholar

[10] E. Hüger, U. Tietze, D. Lott, D. Bougeard, E.E. Haller, H. Schmidt, Appl. Phys. Letters 93, 162104 (2008).

DOI: 10.1063/1.3002294

Google Scholar

[11] J. Mundy, Phys. Rev. B3, 2431 (1971).

Google Scholar

[12] R. Campbell, Phys. Rev. B12, 2318 (1975).

Google Scholar

[13] T. Südkamp, H. Bracht, Phys. Rev. B 94, 125208 (2016).

Google Scholar

[14] H. Bracht, E.E. Haller, R. Clark-Phelps, Phys. Rev. Letters 81, 393 (1998).

Google Scholar

[15] H. Bracht, E.E. Haller, K. Eberl, M. Cardona, R. Clark-Phelps, Mater. Res. Soc. Symp. Proc. 527, 335 (1998).

Google Scholar

[16] H. Bracht, Phys. B (Amsterdam, Netherlands) 376, 11 (2006).

Google Scholar

[17] H. Bracht, S. Brotzmann, Materials Science in Semiconductor Processing 9, 471-476 (2006).

Google Scholar

[18] J.R. Manning, Diffusion Kinetics for Atoms in Crystals, van Norstrand Company, Princeton (1968).

Google Scholar

[19] S.M. Hu, in: Diffusion in Semiconductors, D. Shaw (Ed.), Plenum Press, London and New York, 1973, p.217.

Google Scholar

[20] R.A. Craven, in: Semiconductor Si 1981, H.R. Huff,, R.J. Kriegler, Y. Takeichi (Eds.), The Electrochemical Society, Pennington, New Jersey, 1981, p.254.

Google Scholar

[21] W. Frank, U. Gösele, H. Mehrer, A. Seeger, in: Diffusion in Crystalline Solids, G.E. Murch, A.S. Nowick (Eds.), Academic Press, (1984).

DOI: 10.1016/b978-0-12-522662-2.50007-8

Google Scholar

[22] R.C. Newman, Defect and Diffusion Forum 143-147, 993 - 998 (1997).

Google Scholar

[23] F.C. Frank, D. Turnbull, Phys. Rev. 104, 617 (1956).

Google Scholar

[24] N.A. Stolwijk, B. Schuster, J. Hölzl, H. Mehrer, W. Frank, Physica 116 B, 35 (1983).

Google Scholar

[25] H. Bracht, N.A. Stolwijk, H. Mehrer, Phys. Rev. B52, 16542 (1995).

Google Scholar

[26] N.A. Stolwijk, Defect and Diffusion Forum 95 – 98, 895 (1993).

Google Scholar

[27] N. A. Stolwijk, Phys. Rev. B 42, 5793 (1990).

Google Scholar

[28] J. Hauber, W. Frank, N. A. Stolwijk, Mater. Science Forum 38 – 41, 707 (1989).

Google Scholar