[1]
Beruto, D., and Giordani M. (1993).
Google Scholar
[2]
Escamilla-Roa, E., Sainz-Díaz, C.I., Huertas F.J., and Hernández-Laguna A. (2013).
Google Scholar
[3]
Deer, W.A., Howie R.A., and Zussman J. (2013) An Introduction to the Rock-Forming Minerals. 495 p. London, Mineralogical Society.
Google Scholar
[4]
Bragg, W.L. (1914) The Analysis of Crystals by the X-ray Spectrometer. Proceedings of the Royal Society of London. Series A, 89(613), 468-489.
Google Scholar
[5]
Moghtaderi B., Zanganeh J., Shah K.V., and Wu H. (2012) Application of concrete and demolition waste as CO2 sorbent in chemical looping gasification of biomass. Energy & Fuels, 26, 2046-(2057).
DOI: 10.1021/ef300145t
Google Scholar
[6]
Yin F., Shah K., Zhou C., Tremain P., Yu J., Doroodchi E., and Moghtaderi B. (2016) Novel Calcium-Looping-Based Biomass-Integrated Gasification Combined Cycle: Thermodynamic Modeling and Experimental Study. Energy and Fuels, 30, 1730-1740.
DOI: 10.1021/acs.energyfuels.5b02266
Google Scholar
[7]
Ramezani M., Shah K., Doroodchi E., and Moghtaderi B. (2015) Application of a novel calcium looping process for production of heat and carbon dioxide enrichment of greenhouses. Energy Conversion and Management, 103, 129-138.
DOI: 10.1016/j.enconman.2015.06.044
Google Scholar
[8]
Zuiderduin W.C.J., Westzaan C., Huétink J., and Gaymans R.J. (2003) Toughening of polypropylene with calcium carbonate particles. Polymer, 44(1), 261-275.
DOI: 10.1016/s0032-3861(02)00769-3
Google Scholar
[9]
McGaughey, A.J.H. and Kaviany M. (2004) Thermal conductivity decomposition and analysis using molecular dynamics simulations: Part II. Complex silica structures. International Journal of Heat and Mass Transfer, 47(8–9), 1799-1816.
DOI: 10.1016/j.ijheatmasstransfer.2003.11.009
Google Scholar
[10]
Yao Z., Wang J. S., Li B., and Liu G.R. (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Physical Review B. 71(8), 085417.
Google Scholar
[11]
Chen Y., Li D., Lukes J.R., Ni Z., and Chen M. (2005) Minimum superlattice thermal conductivity from molecular dynamics. Physical Review B, 72(17), 174302.
DOI: 10.1103/physrevb.72.174302
Google Scholar
[12]
McGaughey, A.J.H. and Kaviany M. (2004) Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon. International Journal of Heat and Mass Transfer. 47(8–9): pp.1783-1798.
DOI: 10.1016/j.ijheatmasstransfer.2003.11.002
Google Scholar
[13]
Alder, B.J. and Wainwright T.E. (1957) Phase Transition for a Hard Sphere System. The Journal of Chemical Physics. 27(5): pp.1208-1209.
DOI: 10.1063/1.1743957
Google Scholar
[14]
Kaburaki, H., Li, J., Yip, S., Kimizuka, H. (2007) Dynamical thermal conductivity of argon crystal. Journal of Applied Physics, 102(4), 043514-6.
DOI: 10.1063/1.2772547
Google Scholar
[15]
Tretiakov, K.V., and Scandolo S. (2004) Thermal conductivity of solid argon from molecular dynamics simulations. The Journal of Chemical Physics, 120(8), 3765-3769.
DOI: 10.1063/1.1642611
Google Scholar
[16]
Ladd, A.J.C., Moran B., and Hoover, W.G. (1986) Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics. Physical Review B, 34(8), 5058-5064.
DOI: 10.1103/physrevb.34.5058
Google Scholar
[17]
He, Y.P., Savic, I., Donadio, D., and Galli, G. (2012) Lattice thermal conductivity of semiconducting bulk materials: atomistic simulations. Physical Chemistry Chemical Physics. 14(47): pp.16209-16222.
DOI: 10.1039/c2cp42394d
Google Scholar
[18]
Sellan, D.P., Labdry, E.S., Turney, J.E., McGaughey, A.J.H., and Amon, C.H. (2010) Size effects in molecular dynamics thermal conductivity predictions. Physical Review B. 81(21): p.214305.
DOI: 10.1103/physrevb.81.214305
Google Scholar
[19]
Che, J., Çağın, T., Deng, W., and Goddard III, W.A. (2000) Thermal conductivity of diamond and related materials from molecular dynamics simulations. The Journal of Chemical Physics, 113(16), 6888-6900.
DOI: 10.1063/1.1310223
Google Scholar
[20]
Momenzadeh, L., Moghtaderi, B., Buzzi, O., Liu, X., Sloan S.W., and Murch, G.E. (2018) The thermal conductivity decomposition of calcite calculated by molecular dynamics simulation. Computational Materials Science, 141(Supplement C), 170-179.
DOI: 10.1016/j.commatsci.2017.09.033
Google Scholar
[21]
Evteev, A.V., Momenzadeh, L., Levchenko, E.V., Belova, I.V., and Murch, G.E. (2013) Molecular dynamics prediction of phonon-mediated thermal conductivity of f.c.c. Cu. Philosophical Magazine, 94(7), 1-21.
DOI: 10.1080/14786435.2013.861090
Google Scholar
[22]
Evteev, A.V., Momenzadeh, L., Levchenko, E.V., Belova, I.V., and Murch, G.E. (2014) Decomposition model for phonon thermal conductivity of a monatomic lattice. Philosophical Magazine, 94(34), 3992-4014.
DOI: 10.1080/14786435.2014.969351
Google Scholar
[23]
Evteev, A.V., Momenzadeh, L., Levchenko, E.V., Belova, I.V., and Murch, G.E. (2015) Vibrational contribution to thermal transport in liquid cooper: Equilibrium molecular dynamics study. Computational Materials Science, 96, 229-236.
DOI: 10.1016/j.commatsci.2014.09.028
Google Scholar
[24]
Momenzadeh, L., Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E., and Sohn, Y.H. (2013) Phonon Thermal Conductivity of F.C.C. Cu by Molecular Dynamics Simulation. Defect and Diffusion Forum, 336, 169-184.
DOI: 10.4028/www.scientific.net/ddf.336.169
Google Scholar
[25]
Li, J., Porter, L., and Yip, S. (1998) Atomistic modeling of finite-temperature properties of crystalline β-SiC. Journal of Nuclear Materials, 255(2), 139-152.
DOI: 10.1016/s0022-3115(98)00034-8
Google Scholar
[26]
McGaughey, A.J.H., Hussein, M.I., Landry, E.S., Kaviany, M., and Hulbert, G.M. (2006) Phonon band structure and thermal transport correlation in a layered diatomic crystal. Physical Review B., 74(10), 104304.
DOI: 10.1103/physrevb.74.104304
Google Scholar
[27]
McGaughey, A. J. H., and Kaviany, M. (2002) Molecular Dynamics Calculations of the Thermal Conductivity of Silica Based Crystals. in 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conferenc. St. Louis, Missou.
DOI: 10.2514/6.2002-3343
Google Scholar
[28]
McGaughey, A.J.H., and Kaviany, M. (2006) Phonon Transport in Molecular Dynamics Simulations. Formulation and Thermal Conductivity Prediction, 39, 169-255.
DOI: 10.1016/s0065-2717(06)39002-8
Google Scholar
[29]
Antao, S.M., Mulder, W.H., Hassan, I., Crichton, W.A., and Parise J.B. (2004) Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite+ magnesite↔ dolomite reaction boundary. American Mineralogist, 89(7), 1142-1147.
DOI: 10.2138/am-2004-0728
Google Scholar
[30]
Skinner, A.J., LaFemina, J.P., and Jansen, H.J.F. (1994) Structure and bonding of calcite; a theoretical study. American Mineralogist, 79(3-4), 205.
Google Scholar
[31]
Fisler, D.K., Gale, J.D., and Cygan, R.T. (2000) A shell model for the simulation of rhombohedral carbonate minerals and their point defects. American Mineralogist, 85(1), 217-224.
DOI: 10.2138/am-2000-0121
Google Scholar
[32]
Gianfagna, A. (2014) Periodico di Mineralogia Vol. 83,1. Nuova Cultura.
Google Scholar
[33]
Pavese, A., CattiG, M., PriceR, D., and Jackson, A. (1992) Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data. Physics and Chemistry of Minerals, 19(2), 80-87.
DOI: 10.1007/bf00198605
Google Scholar
[34]
Wang, Q. (2011) A computational study of calcium carbonate, PhD thesis, University College London.
Google Scholar
[35]
De Leeuw, N.H. (2002) Molecular Dynamics Simulations of the Growth Inhibiting Effect of Fe2+, Mg2+, Cd2+, and Sr2+ on Calcite Crystal Growth. The Journal of Physical Chemistry B, 106(20), 5241-5249.
DOI: 10.1021/jp014488h
Google Scholar
[36]
Markgraf, S.A., and Reeder, R.J. (1985) High-temperature structure refinements of calcite and magnesite. American Mineralogist, 70(5-6), 590.
Google Scholar
[37]
Reeder, R.J., and Markgraf, S.A. (1986) High-temperature crystal chemistry of dolomite. American Mineralogist, 71(5-6), 795.
Google Scholar
[38]
Pavese, A., Catti, M., Parker, S.C., and Wall, A. (1996) Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3. Physics and Chemistry of Minerals. 23(2): pp.89-93.
DOI: 10.1007/bf00202303
Google Scholar
[39]
Evteev, A.V., Levchenko, E.V., Momenzadeh, L., Belova, I.V., and Murch, G.E. (2016) Insight into lattice thermal impedance via equilibrium molecular dynamics: case study on Al. Philosophical Magazine, 96(6), 596-619.
DOI: 10.1080/14786435.2016.1143569
Google Scholar
[40]
Levchenko, E.V., Evteev, A.V., Momenzadeh, L., Belova, I.V., and Murch, G.E. (2015) Phonon-mediated heat dissipation in a monatomic lattice: case study on Ni. Philosophical Magazine, 95(32), 3640-3673.
DOI: 10.1080/14786435.2015.1093666
Google Scholar
[41]
Dong, J., Sankey, O.F., and Myles, C.W. (2001) Theoretical Study of the Lattice Thermal Conductivity in Ge Framework Semiconductors. Physical Review Letters, 86(11), 2361-2364.
DOI: 10.1103/physrevlett.86.2361
Google Scholar
[42]
Clauser, C., and Huenges, E. (2013) Thermal Conductivity of Rocks and Minerals, in Rock Physics and Phase Relations. 105-126 .American Geophysical Union.
DOI: 10.1029/rf003p0105
Google Scholar
[43]
Birch, A.F., and Clark, H. (1940) The thermal conductivity of rocks and its dependence upon temperature and composition. American Journal of Science, 238(8), 529-558.
DOI: 10.2475/ajs.238.8.529
Google Scholar
[44]
Grujicic, M., Cao, G., and Roy, W.N. (2005) Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes. Journal of Materials Science, 40(8), 1943-(1952).
DOI: 10.1007/s10853-005-1215-5
Google Scholar
[45]
Robertson, E.C., (1988) Thermal properties of rocks. in Open-File Report.
Google Scholar