The Thermal Conductivity of Magnesite, Dolomite and Calcite as Determined by Molecular Dynamics Simulation

Article Preview

Abstract:

In this study, the phonon-based thermal conductivity of magnesite (MgCO3) and dolomite (CaMg(CO3)2) is calculated and compared with an earlier recent calculation on calcite (CaCO3). Equilibrium molecular dynamics simulation by way of the elegant Green-Kubo formalism is used for calculating the thermal conductivity. The thermal conductivity is investigated over a wide temperature range (from 200 K to 800 K) for all of the above mentioned materials. The most reliable potential parameters are used for characterising the interatomic interactions. In all of the models, two independent mechanisms are considered. The first is temperature independent, which is relevant to the acoustic short-range and optical phonons, and the other is temperature dependent, which is linked to the acoustic long-range phonons. In the study, the heat current autocorrelation function (HCACF) is calculated over the averages of the NPT, NVT and NVE ensembles in the x- and z- directions. In addition, it is shown that the optical, acoustic short- and long-range phonon modes are the main contributors to the decomposition model of the thermal conductivity. In a further investigation, the effects of the computational cell sizes on the thermal conductivity are investigated with five different simulation blocks containing 30, 240, 810, 1920 and 6480 atoms. Finally, this research provides a comparison of the thermal conductivity from this study and experimental studies: they are in good agreement.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 19)

Pages:

18-34

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Beruto, D., and Giordani M. (1993).

Google Scholar

[2] Escamilla-Roa, E., Sainz-Díaz, C.I., Huertas F.J., and Hernández-Laguna A. (2013).

Google Scholar

[3] Deer, W.A., Howie R.A., and Zussman J. (2013) An Introduction to the Rock-Forming Minerals. 495 p. London, Mineralogical Society.

Google Scholar

[4] Bragg, W.L. (1914) The Analysis of Crystals by the X-ray Spectrometer. Proceedings of the Royal Society of London. Series A, 89(613), 468-489.

Google Scholar

[5] Moghtaderi B., Zanganeh J., Shah K.V., and Wu H. (2012) Application of concrete and demolition waste as CO2 sorbent in chemical looping gasification of biomass. Energy & Fuels, 26, 2046-(2057).

DOI: 10.1021/ef300145t

Google Scholar

[6] Yin F., Shah K., Zhou C., Tremain P., Yu J., Doroodchi E., and Moghtaderi B. (2016) Novel Calcium-Looping-Based Biomass-Integrated Gasification Combined Cycle: Thermodynamic Modeling and Experimental Study. Energy and Fuels, 30, 1730-1740.

DOI: 10.1021/acs.energyfuels.5b02266

Google Scholar

[7] Ramezani M., Shah K., Doroodchi E., and Moghtaderi B. (2015) Application of a novel calcium looping process for production of heat and carbon dioxide enrichment of greenhouses. Energy Conversion and Management, 103, 129-138.

DOI: 10.1016/j.enconman.2015.06.044

Google Scholar

[8] Zuiderduin W.C.J., Westzaan C., Huétink J., and Gaymans R.J. (2003) Toughening of polypropylene with calcium carbonate particles. Polymer, 44(1), 261-275.

DOI: 10.1016/s0032-3861(02)00769-3

Google Scholar

[9] McGaughey, A.J.H. and Kaviany M. (2004) Thermal conductivity decomposition and analysis using molecular dynamics simulations: Part II. Complex silica structures. International Journal of Heat and Mass Transfer, 47(8–9), 1799-1816.

DOI: 10.1016/j.ijheatmasstransfer.2003.11.009

Google Scholar

[10] Yao Z., Wang J. S., Li B., and Liu G.R. (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Physical Review B. 71(8), 085417.

Google Scholar

[11] Chen Y., Li D., Lukes J.R., Ni Z., and Chen M. (2005) Minimum superlattice thermal conductivity from molecular dynamics. Physical Review B, 72(17), 174302.

DOI: 10.1103/physrevb.72.174302

Google Scholar

[12] McGaughey, A.J.H. and Kaviany M. (2004) Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon. International Journal of Heat and Mass Transfer. 47(8–9): pp.1783-1798.

DOI: 10.1016/j.ijheatmasstransfer.2003.11.002

Google Scholar

[13] Alder, B.J. and Wainwright T.E. (1957) Phase Transition for a Hard Sphere System. The Journal of Chemical Physics. 27(5): pp.1208-1209.

DOI: 10.1063/1.1743957

Google Scholar

[14] Kaburaki, H., Li, J., Yip, S., Kimizuka, H. (2007) Dynamical thermal conductivity of argon crystal. Journal of Applied Physics, 102(4), 043514-6.

DOI: 10.1063/1.2772547

Google Scholar

[15] Tretiakov, K.V., and Scandolo S. (2004) Thermal conductivity of solid argon from molecular dynamics simulations. The Journal of Chemical Physics, 120(8), 3765-3769.

DOI: 10.1063/1.1642611

Google Scholar

[16] Ladd, A.J.C., Moran B., and Hoover, W.G. (1986) Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics. Physical Review B, 34(8), 5058-5064.

DOI: 10.1103/physrevb.34.5058

Google Scholar

[17] He, Y.P., Savic, I., Donadio, D., and Galli, G. (2012) Lattice thermal conductivity of semiconducting bulk materials: atomistic simulations. Physical Chemistry Chemical Physics. 14(47): pp.16209-16222.

DOI: 10.1039/c2cp42394d

Google Scholar

[18] Sellan, D.P., Labdry, E.S., Turney, J.E., McGaughey, A.J.H., and Amon, C.H. (2010) Size effects in molecular dynamics thermal conductivity predictions. Physical Review B. 81(21): p.214305.

DOI: 10.1103/physrevb.81.214305

Google Scholar

[19] Che, J., Çağın, T., Deng, W., and Goddard III, W.A. (2000) Thermal conductivity of diamond and related materials from molecular dynamics simulations. The Journal of Chemical Physics, 113(16), 6888-6900.

DOI: 10.1063/1.1310223

Google Scholar

[20] Momenzadeh, L., Moghtaderi, B., Buzzi, O., Liu, X., Sloan S.W., and Murch, G.E. (2018) The thermal conductivity decomposition of calcite calculated by molecular dynamics simulation. Computational Materials Science, 141(Supplement C), 170-179.

DOI: 10.1016/j.commatsci.2017.09.033

Google Scholar

[21] Evteev, A.V., Momenzadeh, L., Levchenko, E.V., Belova, I.V., and Murch, G.E. (2013) Molecular dynamics prediction of phonon-mediated thermal conductivity of f.c.c. Cu. Philosophical Magazine, 94(7), 1-21.

DOI: 10.1080/14786435.2013.861090

Google Scholar

[22] Evteev, A.V., Momenzadeh, L., Levchenko, E.V., Belova, I.V., and Murch, G.E. (2014) Decomposition model for phonon thermal conductivity of a monatomic lattice. Philosophical Magazine, 94(34), 3992-4014.

DOI: 10.1080/14786435.2014.969351

Google Scholar

[23] Evteev, A.V., Momenzadeh, L., Levchenko, E.V., Belova, I.V., and Murch, G.E. (2015) Vibrational contribution to thermal transport in liquid cooper: Equilibrium molecular dynamics study. Computational Materials Science, 96, 229-236.

DOI: 10.1016/j.commatsci.2014.09.028

Google Scholar

[24] Momenzadeh, L., Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E., and Sohn, Y.H. (2013) Phonon Thermal Conductivity of F.C.C. Cu by Molecular Dynamics Simulation. Defect and Diffusion Forum, 336, 169-184.

DOI: 10.4028/www.scientific.net/ddf.336.169

Google Scholar

[25] Li, J., Porter, L., and Yip, S. (1998) Atomistic modeling of finite-temperature properties of crystalline β-SiC. Journal of Nuclear Materials, 255(2), 139-152.

DOI: 10.1016/s0022-3115(98)00034-8

Google Scholar

[26] McGaughey, A.J.H., Hussein, M.I., Landry, E.S., Kaviany, M., and Hulbert, G.M. (2006) Phonon band structure and thermal transport correlation in a layered diatomic crystal. Physical Review B., 74(10), 104304.

DOI: 10.1103/physrevb.74.104304

Google Scholar

[27] McGaughey, A. J. H., and Kaviany, M. (2002) Molecular Dynamics Calculations of the Thermal Conductivity of Silica Based Crystals. in 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conferenc. St. Louis, Missou.

DOI: 10.2514/6.2002-3343

Google Scholar

[28] McGaughey, A.J.H., and Kaviany, M. (2006) Phonon Transport in Molecular Dynamics Simulations. Formulation and Thermal Conductivity Prediction, 39, 169-255.

DOI: 10.1016/s0065-2717(06)39002-8

Google Scholar

[29] Antao, S.M., Mulder, W.H., Hassan, I., Crichton, W.A., and Parise J.B. (2004) Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite+ magnesite↔ dolomite reaction boundary. American Mineralogist, 89(7), 1142-1147.

DOI: 10.2138/am-2004-0728

Google Scholar

[30] Skinner, A.J., LaFemina, J.P., and Jansen, H.J.F. (1994) Structure and bonding of calcite; a theoretical study. American Mineralogist, 79(3-4), 205.

Google Scholar

[31] Fisler, D.K., Gale, J.D., and Cygan, R.T. (2000) A shell model for the simulation of rhombohedral carbonate minerals and their point defects. American Mineralogist, 85(1), 217-224.

DOI: 10.2138/am-2000-0121

Google Scholar

[32] Gianfagna, A. (2014) Periodico di Mineralogia Vol. 83,1. Nuova Cultura.

Google Scholar

[33] Pavese, A., CattiG, M., PriceR, D., and Jackson, A. (1992) Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data. Physics and Chemistry of Minerals, 19(2), 80-87.

DOI: 10.1007/bf00198605

Google Scholar

[34] Wang, Q. (2011) A computational study of calcium carbonate, PhD thesis, University College London.

Google Scholar

[35] De Leeuw, N.H. (2002) Molecular Dynamics Simulations of the Growth Inhibiting Effect of Fe2+, Mg2+, Cd2+, and Sr2+ on Calcite Crystal Growth. The Journal of Physical Chemistry B, 106(20), 5241-5249.

DOI: 10.1021/jp014488h

Google Scholar

[36] Markgraf, S.A., and Reeder, R.J. (1985) High-temperature structure refinements of calcite and magnesite. American Mineralogist, 70(5-6), 590.

Google Scholar

[37] Reeder, R.J., and Markgraf, S.A. (1986) High-temperature crystal chemistry of dolomite. American Mineralogist, 71(5-6), 795.

Google Scholar

[38] Pavese, A., Catti, M., Parker, S.C., and Wall, A. (1996) Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3. Physics and Chemistry of Minerals. 23(2): pp.89-93.

DOI: 10.1007/bf00202303

Google Scholar

[39] Evteev, A.V., Levchenko, E.V., Momenzadeh, L., Belova, I.V., and Murch, G.E. (2016) Insight into lattice thermal impedance via equilibrium molecular dynamics: case study on Al. Philosophical Magazine, 96(6), 596-619.

DOI: 10.1080/14786435.2016.1143569

Google Scholar

[40] Levchenko, E.V., Evteev, A.V., Momenzadeh, L., Belova, I.V., and Murch, G.E. (2015) Phonon-mediated heat dissipation in a monatomic lattice: case study on Ni. Philosophical Magazine, 95(32), 3640-3673.

DOI: 10.1080/14786435.2015.1093666

Google Scholar

[41] Dong, J., Sankey, O.F., and Myles, C.W. (2001) Theoretical Study of the Lattice Thermal Conductivity in Ge Framework Semiconductors. Physical Review Letters, 86(11), 2361-2364.

DOI: 10.1103/physrevlett.86.2361

Google Scholar

[42] Clauser, C., and Huenges, E. (2013) Thermal Conductivity of Rocks and Minerals, in Rock Physics and Phase Relations. 105-126 .American Geophysical Union.

DOI: 10.1029/rf003p0105

Google Scholar

[43] Birch, A.F., and Clark, H. (1940) The thermal conductivity of rocks and its dependence upon temperature and composition. American Journal of Science, 238(8), 529-558.

DOI: 10.2475/ajs.238.8.529

Google Scholar

[44] Grujicic, M., Cao, G., and Roy, W.N. (2005) Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes. Journal of Materials Science, 40(8), 1943-(1952).

DOI: 10.1007/s10853-005-1215-5

Google Scholar

[45] Robertson, E.C., (1988) Thermal properties of rocks. in Open-File Report.

Google Scholar