Transport-Optimized Nanoporous Materials for Mass Separation and Conversion as Designed by Microscopic Diffusion Measurement

Article Preview

Abstract:

Nanoporous materials find widespread application in material upgrading by separation (“molecular sieving”) and catalytic conversion. Mass transfer in these materials is a key phenomenon deciding about their technological performance. This chapter deals with the application of measurement techniques which are able to follow the diffusive fluxes of the guest molecules in such materials over “microscopic” distances, including the pulsed field gradient (PFG) technique of Nuclear Magnetic Resonance (NMR) and the techniques of microimaging by interference microscopy (IFM) and by IR microscopy (IRM). Microscopic measurement is a prerequisite for attaining unbiased information about the elementary steps of mass transfer and about their role within the overall process of technological exploitation. We dedicate this treatise to the memory of our dear and highly esteemed colleague Nicolaas Augustinus Stolwijk, notably in recognition of his manifold activities in the field of diffusion, distinguished by their impressively high standard in connecting the message of various techniques of measurement and in combining them to comprehensive views on quite intricate subjects.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 19)

Pages:

96-124

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry 87 (2015).

DOI: 10.1515/iupac.87.0731

Google Scholar

[2] D.M. Ruthven, S. Farooq, and K.S. Knaebel, Pressure Swing Adsorption, VCH, New York, (1994).

Google Scholar

[3] J. Weitkamp, L. Puppe (Eds.), Catalysis and Zeolites, Springer, Berlin, Heidelberg, (1999).

Google Scholar

[4] G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp, Handbook of Heterogeneous Catalysis, 2nd Edition, Wiley-VCH, Weinheim, (2008).

DOI: 10.1002/9783527610044

Google Scholar

[5] M.H. van de Voorde, B. Sels (Eds.), Nanotechnology in catalysis: Applications in the chemical industry, energy development, and environment protection, Wiley-VCH, Weinheim, (2017).

DOI: 10.1002/9783527699827

Google Scholar

[6] E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge, (2009).

Google Scholar

[7] J. van den Bergh, J. Gascon, and F. Kapteijn, Diffusion in zeolites - Impact on catalysis, in: J. Cejka, A. Corma, S. Zones (Eds.), Zeolites and Catalysis: Synthesis, Reactions and Applications, Wiley-VCH, Weinheim, 2010, p.361–387.

DOI: 10.1002/9783527630295.ch13

Google Scholar

[8] J. Kärger, D.M. Ruthven, and D.N. Theodorou, Diffusion in Nanoporous Materials, Wiley - VCH, Weinheim, (2012).

Google Scholar

[9] J. Kärger, and D.M. Ruthven, Diffusion in nanoporous materials: Fundamental principles, insights and challenges, New J. Chem. 40 (2016) 4027–4048.

DOI: 10.1039/c5nj02836a

Google Scholar

[10] S. Mitchell, N.-L. Michels, K. Kunze, and J. Pérez-Ramírez, Visualization of hierarchically structured zeolite bodies from macro to nano length scales, Nat Chem 4 (2012) 825–831.

DOI: 10.1038/nchem.1403

Google Scholar

[11] J. García-Martínez, K. Li (Eds.), Mesoporous Zeolites: Preparation, Characterization and Applications, Wiley-VCH, Weinheim, (2015).

Google Scholar

[12] S. Mitchell, A.B. Pinar, J. Kenvin, P. Crivelli, J. Kärger, and J. Pérez-Ramírez, Structural analysis of hierarchically organized zeolites, Nat. Comms. 6 (2015) 8633.

DOI: 10.1038/ncomms9633

Google Scholar

[13] M. Hartmann, and W. Schwieger, Hierarchically-structured porous materials: from basic understanding to applications, Chem Soc Rev 45 (2016) 3311–3312.

DOI: 10.1039/c6cs90043g

Google Scholar

[14] M.O. Coppens, and G. Ye, Nature-inspired optimization of transport in porous media, in: A. Bunde, J. Caro, J. Kärger, G. Vogl (Eds.), Diffusive Spreading in Nature, Technology and Society, Springer International Publishing, Cham, 2018, p.203–232.

DOI: 10.1007/978-3-319-67798-9_11

Google Scholar

[15] J. Kärger, C. Chmelik, and R. Valiullin, Die innere Größe macht's: Moleküldiffusion in nanoporösen Materialien, Physik Journal 12 (2013) 39–45.

Google Scholar

[16] A. Bunde, J. Caro, J. Kärger, G. Vogl (Eds.), Diffusive Spreading in Nature, Technology and Society, Springer International Publishing, Cham, (2018).

DOI: 10.1007/978-3-319-67798-9

Google Scholar

[17] M. Schönhoff, NMR studies of sorption and adsorption phenomena in colloidal systems, Current Opinion in Colloid & Interface Science 18 (2013) 201–213.

DOI: 10.1016/j.cocis.2013.03.004

Google Scholar

[18] N.A. Stolwijk, M. Wiencierz, C. Heddier, and J. Kösters, What can we learn from ionic conductivity measurements in polymer electrolytes? A case study on poly(ethylene oxide) (PEO)-NaI and PEO-LiTFSI, J Phys Chem B 116 (2012) 3065–3074.

DOI: 10.1021/jp2111956

Google Scholar

[19] N. Stolwijk, M. Wiencierz, J. Fögeling, J. Bastek, and S. Obeidi, The Use of Radiotracer Diffusion to Investigate Ionic Transport in Polymer Electrolytes: Examples, Effects, and Their Evaluation, Zeitschrift für Physikalische Chemie 224 (2010).

DOI: 10.1524/zpch.2010.0017

Google Scholar

[20] J. Fögeling, M. Kunze, M. Schönhoff, and N.A. Stolwijk, Foreign-ion and self-ion diffusion in a crosslinked salt-in-polyether electrolyte, Phys Chem Chem Phys 12 (2010) 7148–7161.

DOI: 10.1039/b923894h

Google Scholar

[21] T. Eschen, J. Kösters, M. Schönhoff, and N.A. Stolwijk, Ionic transport in polymer electrolytes based on PEO and the PMImI ionic liquid: Effects of salt concentration and iodine addition, J Phys Chem B 116 (2012) 8290–8298.

DOI: 10.1021/jp303579b

Google Scholar

[22] J. Kösters, M. Schönhoff, and N.A. Stolwijk, Ion transport effects in a solid polymer electrolyte due to salt substitution and addition using an ionic liquid, J Phys Chem B 117 (2013) 2527–2534.

DOI: 10.1021/jp311563h

Google Scholar

[23] J. Kösters, M. Schönhoff, and N.A. Stolwijk, Mass and Charge Transport in the Polymer-Ionic-Liquid System PEO-EMImI: From Ionic-Liquid-in-Polymer to Polymer-in-Ionic-Liquid Electrolytes, J Phys Chem B 119 (2015) 5693–5700.

DOI: 10.1021/acs.jpcb.5b01113

Google Scholar

[24] H. Mehrer, and N.A. Stolwijk, Heroes and highlights in the history of diffusion, in: C. Chmelik, N.K. Kanellopoulos, J. Kärger, D. Theodorou (Eds.), Diffusion Fundamentals III, Leipziger Universitätsverlag, Leipzig, 2009, p.21–52.

Google Scholar

[25] J. Kärger, Transport Phenomena in Nanoporous Materials, ChemPhysChem 16 (2015) 24–51.

DOI: 10.1002/cphc.201402340

Google Scholar

[26] S. Brandani, J. Hufton, and D. Ruthven, Self-Diffusion of Propane and Propylene in 5a and 13x Zeolite Crystals Studied By the Tracer Zlc Method, Zeolites. 15 (1995) 624–631.

DOI: 10.1016/0144-2449(95)00042-5

Google Scholar

[27] A. Dyer, and H. Faghihian, Diffusion in Heteroionic Zeolites: Part 1 Diffusion of Water in Heteroionic Natrolites, Micropor. Mesopor. Mater. 21 (1998) 27–38.

DOI: 10.1016/s1387-1811(97)00035-8

Google Scholar

[28] C. Chmelik, H. Bux, J. Caro, L. Heinke, F. Hibbe, T. Titze, and J. Kärger, Mass Transfer in a Nanoscale Material Enhanced by an Opposing Flux, Phys. Rev. Lett. 104 (2010) 85902.

DOI: 10.1103/physrevlett.104.085902

Google Scholar

[29] H. Mehrer, Diffusion in Solids, Springer, Berlin, (2007).

Google Scholar

[30] J. Kärger (Ed.), Leipzig, Einstein, Diffusion, 3rd edition, Leipziger Universitätsverlag, Leipzig, (2014).

Google Scholar

[31] A. Feldhoff, J. Caro, H. Jobic, C.B. Krause, P. Galvosas, and J. Kärger, Intracrystalline Transport Resistances in Nanoporous Zeolite X, ChemPhysChem 10 (2009) 2429–2433.

DOI: 10.1002/cphc.200900279

Google Scholar

[32] J. Kärger, W. Heink, H. Pfeifer, M. Rauscher, and J. Hoffmann, NMR Evidence for the Existence of Surface Barriers on Zeolite Crystallites, Zeolites 2 (1982) 275–278.

DOI: 10.1016/s0144-2449(82)80070-5

Google Scholar

[33] J. Kärger, and H. Pfeifer, NMR-Self-Diffusion Studies in Zeolite Science and Technology, Zeolites 7 (1987) 90–107.

DOI: 10.1016/0144-2449(87)90067-4

Google Scholar

[34] J. Kärger, and H. Pfeifer, PFG NMR self-diffusion measurements in microporous adsorbents, Magn. Reson. Imaging 12 (1994) 235–239.

DOI: 10.1016/0730-725x(94)91525-3

Google Scholar

[35] J. Kärger, and J. Caro, Interpretation and Correlation of Zeolitic Diffusivities Obtained from Nuclear Magnetic Resonance and Sorption Experiments, J. Chem. Soc. Faraday Trans. I 73 (1977) 1363–1376.

DOI: 10.1039/f19777301363

Google Scholar

[36] S. Brandani, D.M. Ruthven, and J. Kärger, Concentration Dependence of Self-Diffusivity of Methanol in NaX Zeolite Crystals, Zeolites 15 (1995) 494–495.

DOI: 10.1016/0144-2449(95)00031-z

Google Scholar

[37] J. Kärger, Measurement of diffusion in zeolites - A never ending challenge?, Adsorption 9 (2003) 29–35.

Google Scholar

[38] C. Chmelik, D. Enke, P. Galvosas, O.C. Gobin, A. Jentys, H. Jobic, J. Kärger, C. Krause, J. Kullmann, J.A. Lercher, S. Naumov, D.M. Ruthven, and T. Titze, Nanoporous Glass as a Model System for a Consistency Check of the Different Techniques of Diffusion Measurement, ChemPhysChem 12 (2011).

DOI: 10.1002/cphc.201100072

Google Scholar

[39] J. Kärger, H. Pfeifer, and W. Heink, Principles and Application of Self-Diffusion Measurements by Nuclear Magnetic Resonance, Advances in Magn. Reson. 12 (1988) 2–89.

DOI: 10.1016/b978-0-12-025512-2.50004-x

Google Scholar

[40] P.T. Callaghan, Principles of NMR Microscopy, Clarendon Press, Oxford, (1991).

Google Scholar

[41] R. Kimmich, NMR Tomography, Diffusometry, Relaxometry, Springer, Berlin, (1997).

Google Scholar

[42] F. Stallmach, and P. Galvosas, Spin echo NMR diffusion studies, Ann. Rep. NMR Spectr. 61 (2007) 51–131.

DOI: 10.1016/s0066-4103(07)61102-8

Google Scholar

[43] R. Valiullin (Ed.), Diffusion NMR of Confined Systems, Royal Society of Chemistry, Cambridge, (2016).

Google Scholar

[44] E.O. Stejskal, and J.E. Tanner, Spin Diffusion Measurements - Spin Echoes in Presence of a Time-Dependent Field Gradient, J. Chem. Phys. 42 (1965) 288.

DOI: 10.1063/1.1695690

Google Scholar

[45] J. Kärger, and W. Heink, The Propagator Representation of Molecular Transport in Microporous Crystallites, J. Magn. Reson. 51 (1983) 1–7.

DOI: 10.1016/0022-2364(83)90094-x

Google Scholar

[46] J. Kärger, Nmr Self-Diffusion Studies in Heterogeneous Systems, Adv. Colloid Interface Sci. 23 (1985) 129–148.

DOI: 10.1016/0001-8686(85)80018-x

Google Scholar

[47] C. Chmelik, and J. Kärger, In-situ Study on Molecular Diffusion Phenomena in Nanoporous Catalytic Solids, Chem. Soc. Rev. 39 (2010) 4864–4884.

DOI: 10.1039/c0cs00100g

Google Scholar

[48] J. Caro, S. Hǒcevar, J. Kärger, and L. Riekert, Intracrystalline self-diffusion of H2O and CH4 in ZSM-5 zeolites, Zeolites 6 (1986) 213–216.

DOI: 10.1016/0144-2449(86)90051-5

Google Scholar

[49] J. Kärger, M. Kocirik, and A. Zikanova, Molecular-Transport through Assemblages of Microporous Particles, J. Colloid Interface Sci. 84 (1981) 240–249.

DOI: 10.1016/0021-9797(81)90281-2

Google Scholar

[50] P. Zeigermann, S. Naumov, S. Mascotto, J. Kärger, B.M. Smarsly, and R. Valiullin, Diffusion in Hierarchical Mesoporous Materials: Applicability and Generalization of the Fast-Exchange Diffusion Model, Langmuir 28 (2012) 3621–3632.

DOI: 10.1021/la2047432

Google Scholar

[51] D. Schneider, D. Mehlhorn, P. Zeigermann, J. Kärger, and R. Valiullin, Transport properties of hierarchical micro-mesoporous materials, Chemical Society reviews 45 (2016) 3439–3467.

DOI: 10.1039/c5cs00715a

Google Scholar

[52] J. Kärger, H. Pfeifer, E. Riedel, and H. Winkler, Self-diffusion measurements of water adsorbed in NaY zeolites by means of NMR pulsed field gradient techniques, J. Coll. Interf. Sci. 44 (1973) 187–188.

DOI: 10.1016/0021-9797(73)90208-7

Google Scholar

[53] F. D'Orazio, S. Bhattacharja, W.P. Halperin, and R. Gerhardt, Enhanced Self-Diffusion of Water in Restricted Geometry, Phys. Rev. Lett. 63 (1989) 43–46.

DOI: 10.1103/physrevlett.63.43

Google Scholar

[54] J. Kärger, A Study of Fast Tracer Desorption in Molecular Sieve Crystals, AIche Journal 28 (1982) 417–423.

DOI: 10.1002/aic.690280309

Google Scholar

[55] A. Dyer, Liquid Scintillation Counting, London, (1970).

Google Scholar

[56] C. Förste, J. Kärger, and H. Pfeifer, Intracrystalline Mass Transfer in Zeolites Monitored by Microscopic and Macroscopic Techniques, J. Am. Chem. Soc. 112 (1990) 7–9.

DOI: 10.1021/ja00157a003

Google Scholar

[57] M. Kocirik, and A. Zikanova, The analysis of the adsorption kinetics in materials with polydisperse pore structure, Ind. Eng. Chem. Fundamen. 13 (1974) 347–350.

DOI: 10.1021/i160052a009

Google Scholar

[58] M.M. Dubinin, I.T. Erashko, O. Kadlec, V.I. Ulin, A.M. Voloshchuk, and P.P. Zolotarev, Kinetics of Physical Adsorption by Carbonaceous Adsorbents of Biporous Structure, Carbon 13 (1975) 193–200.

DOI: 10.1016/0008-6223(75)90231-6

Google Scholar

[59] R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, (1978).

Google Scholar

[60] J. Kärger, M. Bülow, B.R. Millward, and J.M. Thomas, A phenomenological Study of Surface Barriers in Zeolites, Zeolites 6 (1986) 146–150.

DOI: 10.1016/0144-2449(86)90039-4

Google Scholar

[61] J. Kärger, H. Pfeifer, R. Richter, H. Furtig, W. Roscher, and R. Seidel, NMR-Study of Mass-Transfer in Granulated Molecular-Sieves, Aiche J. 34 (1988) 1185–1189.

DOI: 10.1002/aic.690340714

Google Scholar

[62] J. Kärger, H. Pfeifer, F. Stallmach, M. Bülow, P. Struve, R. Entner, H. Spindler, and R. Seidel, Influence of Molecular Shape on Probing Mass-Transfer Resistances on Zeolites, Aiche J. 36 (1990) 1500–1504.

DOI: 10.1002/aic.690361005

Google Scholar

[63] S. Stapf, S.-I. Han (Eds.), NMR Imaging in Chemical Engineering, Wiley-VCH, Weinheim, (2006).

Google Scholar

[64] L.F. Gladden, M.D. Mantle, and A.J. Sederman, Magnetic resonance imaging, in: G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (Eds.), III, Handbook of Heterogeneous Catalysis, 2nd Edition, Wiley-VCH, Weinheim, 2008, p.1784–1801.

DOI: 10.1002/9783527610044.hetcat0095

Google Scholar

[65] A.A. Lysova, and I.V. Koptyug, Magnetic resonance imaging methods for in situ studies in heterogeneous catalysis, Chem. Soc. Rev. 39 (2010) 4585–4601.

DOI: 10.1039/b919540h

Google Scholar

[66] W. Heink, J. Kärger, and H. Pfeifer, Application of zeugmatography to study kinetics of physical adsorption, Chem. Engi. Sci. 33 (1978) 1019–1023.

DOI: 10.1016/0009-2509(78)85005-2

Google Scholar

[67] J. Kärger, and S. Vasenkov, Quantitation of diffusion in zeolite catalysts, Micropor. Mesopor. Mater. 85 (2005) 195–206.

DOI: 10.1016/j.micromeso.2005.06.020

Google Scholar

[68] J. Kärger, T. Binder, C. Chmelik, F. Hibbe, H. Krautscheid, R. Krishna, and J. Weitkamp, Microimaging of Transient Guest Profiles to Monitor Mass Transfer in Nanoporous Materials, Nat. Mater. 13 (2014) 333–343.

DOI: 10.1038/nmat3917

Google Scholar

[69] O. Geier, S. Vasenkov, E. Lehmann, J. Kärger, U. Schemmert, R.A. Rakoczy, and J. Weitkamp, Interference Microscopy Investigation of the Influence of Regular Intergrowth Effects in MFI-Type Zeolites on Molecular Uptake, J. Phys. Chem. B 105 (2001).

DOI: 10.1021/jp010777u

Google Scholar

[70] J. Kärger, P. Kortunov, S. Vasenkov, L. Heinke, D.B. Shah, R.A. Rakoczy, Y. Traa, and J. Weitkamp, Unprecedented insight into diffusion by monitoring concentration of guest molecules in nanoporous host materials, Angew. Chem.-Int. Edit. 45 (2006).

DOI: 10.1002/anie.200602892

Google Scholar

[71] T. Titze, C. Chmelik, J. Kullmann, L. Prager, E. Miersemann, R. Gläser, D. Enke, J. Weitkamp, and J. Kärger, Microimaging of Transient Concentration Profiles of Reactant and Product Molecules during Catalytic Conversion in Nanoporous Materials, Angew. Chem. Int. Ed. 54 (2015).

DOI: 10.1002/anie.201409482

Google Scholar

[72] E. Lehmann, S. Vasenkov, J. Kärger, G. Zadrozna, and J. Kornatowski, Intracrystalline monitoring of molecular uptake into the one- dimensional channels of the AFI-type crystals using interference microscopy, J. Chem. Phys. 118 (2003) 6129–6132.

DOI: 10.1063/1.1565324

Google Scholar

[73] M. Arnold, P. Kortunov, D.J. Jones, Y. Nedellec, J. Kärger, and J. Caro, Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate, European J. Inorg. Chem. (2007) 60–64.

DOI: 10.1002/ejic.200600698

Google Scholar

[74] A. Lauerer, T. Binder, C. Chmelik, E. Miersemann, J. Haase, D.M. Ruthven, and J. Kärger, Uphill diffusion and overshooting in the adsorption of binary mixtures in nanoporous solids, Nat. Comms. 6 (2015) 7697.

DOI: 10.1038/ncomms8697

Google Scholar

[75] T. Titze, A. Lauerer, L. Heinke, C. Chmelik, N.E.R. Zimmermann, F.J. Keil, D.M. Ruthven, and J. Kärger, Transport in Nanoporous Materials Including MOFs: The Applicability of Fick's Laws, Angew. Chem. Int. Ed. 54 (2015) 14580–14583.

DOI: 10.1002/anie.201506954

Google Scholar

[76] S. Hwang, B. Parditka, C. Cserháti, Z. Erdélyi, R. Gläser, J. Haase, J. Kärger, W. Schmidt, and C. Chmelik, IR Microimaging of Direction-Dependent Uptake in MFI-Type Crystals, Chem. Ingen. Techn. 89 (2017) 1686–1693.

DOI: 10.1002/cite.201700128

Google Scholar

[77] D. Tzoulaki, W. Schmidt, U. Wilczok, and J. Kärger, Formation of surface barriers on silicalite-1 crystal fragments by residual water vapour as probed with isobutane by interference microscopy, Micropor. Mesopor. Mater. 110 (2008) 72–76.

DOI: 10.1016/j.micromeso.2007.08.041

Google Scholar

[78] D. Tzoulaki, L. Heinke, J. Li, H. Lim, D. Olson, J. Caro, R. Krishna, C. Chmelik, and J. Kärger, Assessing surface permeabilities from transient guest profiles in nanoporous materials, Angew. Chem. Int. Ed. 48 (2009) 3525–3528.

DOI: 10.1002/anie.200804785

Google Scholar

[79] D. Tzoulaki, L. Heinke, M. Castro, P. Cubillas, M.W. Anderson, W. Zhou, P. Wright, and J. Kärger, Assessing nanoporous materials by interference microscopy: remarkable dependence of molecular transport on composition and microstructure in the silicoaluminophosphate zeotype STA-7, J. Amer. Chem. Soc. 132 (2010).

DOI: 10.1021/ja104016n

Google Scholar

[80] F. Hibbe, C. Chmelik, L. Heinke, S. Pramanik, J. Li, D.M. Ruthven, D. Tzoulaki, and J. Kärger, The Nature of Surface Barriers on Nanoporous Solids Explored by Microimaging of Transient Guest Distributions, J. Am. Chem. Soc. 133 (2011) 2804–2807.

DOI: 10.1021/ja108625z

Google Scholar

[81] F. Hibbe, J. Caro, C. Chmelik, A. Huang, T. Kirchner, D. Ruthven, R. Valiullin, and J. Kärger, Monitoring Molecular Mass Transfer in Cation-Free Nanoporous Host-Crystals of Type AlPO-LTA, J. Am. Chem. Soc. 134 (2012) 7725–7732.

DOI: 10.1021/ja211492b

Google Scholar

[82] H.C. Gaede, and K. Gawrisch, Multi-dimensional pulsed field gradient magic angle spinning NMR experiments on membranes, Magn. Reson. Chem. 42 (2004) 115–122.

DOI: 10.1002/mrc.1329

Google Scholar

[83] A. Pampel, K. Zick, H. Glauner, and F. Engelke, Studying lateral diffusion in lipid bilayers by combining a magic angle spinning NMR probe with a microimaging gradient system, J. Am. Chem. Soc. 126 (2004) 9534–9535.

DOI: 10.1021/ja0474042

Google Scholar

[84] H.A. Scheidt, D. Huster, and K. Gawrisch, Diffusion of cholesterol and its precursors in lipid membranes studied by H-1 pulsed field gradient magic angle spinning NMR, Biophys. J. 89 (2005) 2504–2512.

DOI: 10.1529/biophysj.105.062018

Google Scholar

[85] A. Pampel, F. Engelke, P. Galvosas, C. Krause, F. Stallmach, D. Michel, and J. Kärger, Selective multi-component diffusion measurement in zeolites by pulsed field gradient NMR, Microporous Mesoporous Mater. 90 (2006) 271–277.

DOI: 10.1016/j.micromeso.2005.08.031

Google Scholar

[86] D. Freude, S. Beckert, F. Stallmach, R. Kurzhals, D. Täschner, H. Toufar, J. Kärger, and J. Haase, Ion and water mobility in hydrated Li-LSX zeolite studied by 1H, 6Li and 7Li NMR spectroscopy and diffusometry, Micropor. Mesopor. Mater. 172 (2013).

DOI: 10.1016/j.micromeso.2013.01.011

Google Scholar

[87] A. Lauerer, R. Kurzhals, H. Toufar, D. Freude, and J. Kärger, Tracing compartment exchange by NMR diffusometry: Water in lithium-exchanged low-silica X zeolites, J. Magn. Reson. 289 (2018) 1–11.

DOI: 10.1016/j.jmr.2018.01.011

Google Scholar

[88] C. Chmelik, and J. Kärger, The predictive power of classical transition state theory revealed in diffusion studies with MOF ZIF-8, Micropor. Mesopor. Mater. 225 (2016) 128–132.

DOI: 10.1016/j.micromeso.2015.11.051

Google Scholar

[89] J. Weitkamp, Zeolites and Catalysis, Solid State Ionics 131 (2000) 175–188.

DOI: 10.1016/s0167-2738(00)00632-9

Google Scholar

[90] P. Kortunov, S. Vasenkov, J. Kärger, M.F. Elia, M. Perez, M. Stöcker, G.K. Papadopoulos, D. Theodorou, B. Drescher, G. McElhiney, B. Bernauer, V. Krystl, M. Kocirik, A. Zikanova, H. Jirglova, C. Berger, R. Gläser, J. Weitkamp, and E.W. Hansen, Diffusion in fluid catalytic cracking catalysts on various displacement scales and its role in catalytic performance, Chem. Mat. 17 (2005).

DOI: 10.1021/cm050031z

Google Scholar

[91] P. Kortunov, S. Vasenkov, J. Kärger, M.F. Elia, M. Perez, M. Stöcker, G.K. Papadopoulos, D. Theodorou, B. Drescher, G. McElhiney, B. Bernauer, V. Krystl, M. Kocirik, A. Zikanova, H. Jirglova, C. Berger, R. Gläser, J. Weitkamp, and E.W. Hansen, Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts, Magn. Reson. Imaging 23 (2005).

DOI: 10.1016/j.mri.2004.11.016

Google Scholar

[92] P. Kortunov, S. Vasenkov, J. Kärger, R. Valiullin, P. Gottschalk, M.F. Elia, M. Perez, M. Stöcker, B. Drescher, G. McElhiney, C. Berger, R. Gläser, and J. Weitkamp, The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales, J. Am. Chem. Soc. 127 (2005).

DOI: 10.1021/ja053134r

Google Scholar

[93] J. Kärger, H. Pfeifer, J. Caro, M. Bülow, H. Schlodder, R. Mostowicz, and J. Völter, Controlled Coke Deposition on Zeolite Zsm5 and Its Influence on Molecular-Transport, Appl. Catal. 29 (1987) 21–30.

DOI: 10.1016/s0166-9834(00)82603-2

Google Scholar

[94] J. Völter, J. Caro, M. Bülow, B. Fahlke, J. Kärger, and M. Hunger, Diffusion, Cracking and Coking on HZSM-5 of Various Morphologies, Appl. Catal. 42 (1988) 15–27.

DOI: 10.1016/s0166-9834(00)80072-x

Google Scholar

[95] J. Caro, M. Bülow, H. Jobic, J. Kärger, and B. Zibrowius, Molecular Mobility Measurement of Hydrocarbons in Zeolites by NMR Techniques, Adv. Catal. 39 (1993) 351–414.

DOI: 10.1016/s0360-0564(08)60582-9

Google Scholar

[96] J. GILSON, and E.G. Derouane, On the external and intracrystalline surface catalytic activity of pentasil zeolites, Journal of Catalysis 88 (1984) 538–541.

DOI: 10.1016/0021-9517(84)90037-x

Google Scholar

[97] L. Karwacki, M.H.F. Kox, D.A.M. de Winter, M.R. Drury, J.D. Meeldijk, E. Stavitski, W. Schmidt, M. Mertens, P. Cubillas, N. John, A. Chan, N. Kahn, S.R. Bare, M. Anderson, J. Kornatowski, and B.M. Weckhuysen, Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers, Nat. Mater. 8 (2009).

DOI: 10.1038/nmat2530

Google Scholar

[98] G. Seidel, J. Welker, W. Ermischer, and K. Wehner, Zum Entwicklungsstand der Gewinnung von n-Paraffinen mittlerer Kettenlange nach dern Parex-Verfahren, Chem. Techn. 31 (1979) 405.

DOI: 10.1002/chin.197026203

Google Scholar

[99] M. Bülow, P. Struve, G. Finger, C. Redszus, K. Ehrhardt, W. Schirmer, and J. Kärger, Sorption Kinetics of n-Hexane on MgA Zeolites of Different Crystal Sizes, J. Chem. Soc. Farad. Trans. I. 76 (1980) 597.

DOI: 10.1039/f19807600597

Google Scholar

[100] R. Richter, R. Seidel, J. Kärger, H. Heink, H. Pfeifer, H. Fürtig, W. Höse, and W. Roscher, Molecular-Transport in Granulated Zeolite NaCaA .2. Sieve Deterioration by Hydrothermal Treatment and by Contact With Hydrocarbons, Z Phys. Chem. - Leipzig 267 (1986).

DOI: 10.1515/zpch-1986-267146

Google Scholar

[101] J.C.S. Remi, A. Lauerer, C. Chmelik, I. Vandendael, H. Terryn, G.V. Baron, Denayer, Joeri F. M., and J. Kärger, The role of crystal diversity in understanding mass transfer in nanoporous materials, Nat. Mater. 15 (2015) 401–406.

DOI: 10.1038/nmat4510

Google Scholar

[102] D. Schneider, D. Kondrashova, R. Valiullin, A. Bunde, and J. Kärger, Mesopore-Promoted Transport in Microporous Materials, Chem. Ingen. Techn. 87 (2015) 1794–1809.

DOI: 10.1002/cite.201500037

Google Scholar

[103] J.C. Groen, W. Zhu, S. Brouwer, S.J. Huynink, F. Kapteijn, J.A. Moulijn, and J. Perez-Ramirez, Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication, J. Am. Chem. Soc. 129 (2007) 355–360.

DOI: 10.1002/chin.200717010

Google Scholar

[104] F.C. Meunier, D. Verboekend, J.-P. Gilson, J.C. Groen, and J. Pérez-Ramírez, Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication, Microporous and Mesoporous Materials 148 (2012).

DOI: 10.1016/j.micromeso.2011.08.002

Google Scholar

[105] M. Rincon Bonilla, T. Titze, F. Schmidt, D. Mehlhorn, C. Chmelik, R. Valiullin, S.K. Bhatia, S. Kaskel, R. Ryoo, and J. Kärger, Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA, Materials 6 (2013).

DOI: 10.3390/ma6072662

Google Scholar

[106] L. Gueudré, M. Milina, S. Mitchell, and J. Pérez-Ramírez, Superior Mass Transfer Properties of Technical Zeolite Bodies with Hierarchical Porosity, Adv. Funct. Mater. 24 (2014) 209–219.

DOI: 10.1002/adfm.201203557

Google Scholar

[107] X. Zhang, D. Liu, D. Xu, S. Asahina, K.A. Cychosz, K.V. Agrawal, Y. Al Wahedi, A. Bhan, S. Al Hashimi, O. Terasaki, M. Thommes, and M. Tsapatsis, Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching, Science 336 (2012).

DOI: 10.1126/science.1221111

Google Scholar

[108] A. Inayat, I. Knoke, E. Spieker, and W. Schwieger, Assemblies of mesoporous FAU-type zeolite nanosheets, Angew. Chem. Int. Ed. 51 (2012) 1962–(1965).

DOI: 10.1002/anie.201105738

Google Scholar

[109] D. Mehlhorn, A. Inayat, W. Schwieger, R. Valiullin, and J. Kärger, Probing mass transfer in mesoporous faujasite-type zeolite nanosheet assemblies, Chemphyschem : a European journal of chemical physics and physical chemistry 15 (2014) 1681–1686.

DOI: 10.1002/cphc.201301133

Google Scholar

[110] J. Kärger, and P. Volkmer, Comparison of Predicted and Nuclear Magnetic Resonance Zeolitic Diffusion Coefficients, J. Chem. Soc. Faraday Trans. I 76 (1980) 1562–1568.

DOI: 10.1039/f19807601562

Google Scholar

[111] H. Thamm, Thesis Promotion A, Berlin, (1975).

Google Scholar

[112] D. Mehlhorn, R. Valiullin, J. Kärger, K. Cho, and R. Ryoo, Intracrystalline diffusion in mesoporous zeolites, ChemPhysChem 13 (2012) 1495–1499.

DOI: 10.1002/cphc.201200048

Google Scholar

[113] D. Mehlhorn, R. Valiullin, J. Kärger, K. Cho, and R. Ryoo, Exploring the Hierarchy of Transport Phenomena in Hierarchical Pore Systems by NMR Diffusion Measurement, Micropor. Mesopor. Mater. 164 (2012) 273–279.

DOI: 10.1016/j.micromeso.2012.06.049

Google Scholar

[114] W. Heink, J. Kärger, H. Pfeifer, K.P. Datema, and A.K. Nowak, Self-Diffusion Measurements of n-Alkanes in Zeolite NaCaA by Pulsed Field Gradient Nuclear Magnetic Resonance, J. Chem. Soc. Faraday Trans. 88 (1992) 3505–3509.

DOI: 10.1039/ft9928800515

Google Scholar

[115] D.M. Ruthven, Fundamentals of adsorption equilibrium and kinetics in microporous solids, in: H.G. Karge, J. Weitkamp (Eds.), Science and Technology - Molecular Sieves, vol. 7, Adsorption and Diffusion, Springer, Berlin, Heidelberg, 2008, p.1–43.

DOI: 10.1007/3829_007

Google Scholar

[116] D.M. Ruthven, S. Brandani, and M. Eic, Measurement of Diffusion in Microporous Solids by Macroscopic Methods, in: H.G. Karge, J. Weitkamp (Eds.), Science and Technology - Molecular Sieves, vol. 7, Adsorption and Diffusion, Springer, Berlin, Heidelberg, 2008, p.45.

DOI: 10.1007/3829_009

Google Scholar

[117] A. Zürner, J. Kirstein, M. Döblingern, C. Bräuchle, and T. Bein, Visualizing single-molecule diffusion in mesoporous materials, Nature 450 (2007) 705–709.

DOI: 10.1038/nature06398

Google Scholar

[118] J. Kirstein, B. Platschek, C. Jung, R. Brown, T. Bein, and C. Bräuchle, Exploration of nanostructured channel systems with single-molecule probes, Nat. Mater. 6 (2007) 303–310.

DOI: 10.1038/nmat1861

Google Scholar

[119] C. Bräuchle, D.C. Lamb, J. Michaelis (Eds.), Single Particle Tracking and Single Molecule Energy Transfer, Wiley-VCH, Weinheim, (2010).

DOI: 10.1002/9783527628360

Google Scholar

[120] F. Feil, S. Naumov, J. Michaelis, R. Valiullin, D. Enke, J. Kärger, and C. Bräuchle, Single-particle and ensemble diffusivities - test of ergodicity, Angew. Chem. Int. Ed. 51 (2012) 1152–1155.

DOI: 10.1002/anie.201105388

Google Scholar

[121] H. Jobic, and D. Theodorou, Quasi-elastic neutron scattering and molecular dynamics simulations as complementary techniques for studying diffusion in zeolites, Micropor. Mesopor. Mater. 102 (2007) 21–50.

DOI: 10.1016/j.micromeso.2006.12.034

Google Scholar

[122] H. Jobic, Investigation of Diffusion in Molecular Sieves by Neutron Scattering Techniques, in: H.G. Karge, J. Weitkamp (Eds.), Science and Technology - Molecular Sieves, vol. 7, Adsorption and Diffusion, Springer, Berlin, Heidelberg, 2008, p.207.

DOI: 10.1007/3829_2007_012

Google Scholar

[123] N. Rosenbach, H. Jobic, A. Ghoufi, T. Devic, M.M. Koza, N. Ramsahye, C.J. Mota, C. Serre, and G. Maurin, Diffusion of Light Hydrocarbons in the Flexible MIL-53(Cr) Metal–Organic Framework: A Combination of Quasi-Elastic Neutron Scattering Experiments and Molecular Dynamics Simulations, J. Phys. Chem. C 118 (2014).

DOI: 10.1021/jp504900q

Google Scholar

[124] R. Valiullin, Can Random Motion Look the Same from Different Perspectives?, Chemistry International 38 (2015) 24.

Google Scholar