Monte Carlo Simulation of Correlation Effects in a Random SC Alloy via Interstitialcy Mechanisms

Article Preview

Abstract:

In this paper some recent progress in the area of Monte Carlo simulation of diffusion via the interstitialcy mechanism in a randomly ordered binary alloy is reviewed. Topics discussed include the calculation of tracer correlation factors fA and fB as a function of composition and jump frequency ratio wA/wB and interstitialcy correlation factors fI; which play a crucial role in the interpretation of ion-conductivity data. The percolation behavior of fI when wA ≪ wB is analysed in detail and limits of the tracer diffusivity ratios bD A/bD B for alloy compositions below the percolation threshold are presented. Allowance for non-collinear jumps (partly) replacing concurrent collinear site exchanges leads to a reduction of diffusion correlation effects. This goes along with a shift of the diffusion percolation threshold to lower concentrations of the (more) mobile component B. Even stronger changes of mass and charge transport compared to an exclusively collinear interstitialcy scheme are observed for additional contributions of direct interstitial jumps. It is remarkable that for both extensions of interstitialcy-mediated diffusion the Haven ratio appears to be greater than unity in certain composition ranges poor in B.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 19)

Pages:

35-60

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Mehrer, Diffusion in Solids, Springer, Berlin, (2007).

Google Scholar

[2] C.A. Sholl, Diffusion correlation factors and atomic displacements for the vacancy mechanism, J. Phys. C 14 (1981), pp.2723-2729.

DOI: 10.1088/0022-3719/14/20/011

Google Scholar

[3] H. Bakker, N.A. Stolwijk, L. van der Meij, and T.J. Zuurendonk, Computer simulation of diffusion in concentrated binary alloys with short and long range disorder, AIME Nuclear Metallurgy Series 20 (1976), pp.96-108.

Google Scholar

[4] J.R. Manning, Diffusion Kinetics for Atoms in Crystals, Van Nostrand, Princeton, NJ, (1968).

Google Scholar

[5] J.R. Manning, Correlation factors for diffusion in nondilute alloys, Phys. Rev. B 4 (1971), pp.1111-1121.

DOI: 10.1103/physrevb.4.1111

Google Scholar

[6] I.V. Belova and G.E. Murch, Tracer correlation factors in the random alloy, Phil. Mag. 80 (2000), pp.1469-1479.

DOI: 10.1080/01418610008212131

Google Scholar

[7] F. Wilangowski and N.A. Stolwijk, Vacancy-related diffusion correlation effects in a simple cubic random alloy and on the Na-K sublattice of alkali feldspar, Phil. Mag. 95 (2015), pp.2277-2293.

DOI: 10.1080/14786435.2015.1054918

Google Scholar

[8] G.E. Murch, Diffusion in Crystalline Solids, chap. Simulation of Diffusion Kinetics with the Monte Carlo Method, Academic Press, New York (1984).

DOI: 10.1016/b978-0-12-522662-2.50012-1

Google Scholar

[9] N.A. Stolwijk, Diffusion in Ordered Binary Solid Systems, PhD thesis, University of Amsterdam, Netherlands, (1980).

Google Scholar

[10] F. Wilangowski and N.A. Stolwijk, Monte Carlo simulation of diffusion and ionic conductivity in a simple cubic random alloy via the interstitialcy mechanism, J. Phys. Condens. Matter 27 (2015), p.505401.

DOI: 10.1088/0953-8984/27/50/505401

Google Scholar

[11] F. Wilangowski and N.A. Stolwijk, A Monte Carlo study of ionic transport in a simple cubic random alloy via the interstitialcy mechanism: Effects of non-collinear and direct interstitial jumps, Phil. Mag. 97 (2017), pp.108-127.

DOI: 10.1080/14786435.2016.1235293

Google Scholar

[12] H.J. de Bruin and G.E. Murch, Diffusion correlation effects in non-stoichiometric solids, Phil. Mag. 27 (1973), pp.1475-1488.

DOI: 10.1080/14786437308226902

Google Scholar

[13] K. Compaan and Y. Haven, Correlation factors for diffusion in solids. Part 2.-Indirect interstitial mechanism, Trans. Faraday Soc. 54 (1958), pp.1498-1508.

DOI: 10.1039/tf9585401498

Google Scholar

[14] G.E. Murch, The Haven ratio in fast ionic conductors, Solid State Ion. 7 (1982), pp.177-198.

DOI: 10.1016/0167-2738(82)90050-9

Google Scholar

[15] W. Frank, U. Gösele, H. Mehrer, and A. Seeger, Diffusion in Crystalline Solids, chap. Diffusion in Silicon and Germanium, Academic Press, New York (1984).

DOI: 10.1016/b978-0-12-522662-2.50007-8

Google Scholar

[16] H. Bracht, N.A. Stolwijk, and H. Mehrer, Properties of intrinsic point defects in silicon determined by zinc diffusion under nonequilibrium conditions, Phys. Rev. B 52 (1995), pp.16542-16560.

DOI: 10.1103/physrevb.52.16542

Google Scholar

[17] G. Bösker, N.A. Stolwijk, J.V. Thordson, U. Södervall, and T.G. Andersson, Diffusion of nitrogen from a buried doping layer in gallium arsenide revealing the prominent role of As interstitials, Phys. Rev. Lett. 81 (1998), pp.3443-3446.

DOI: 10.1103/physrevlett.81.3443

Google Scholar

[18] K. Compaan and Y. Haven, Correlation factors for diffusion in solids, Trans. Faraday Soc. 52 (1956), pp.786-801.

DOI: 10.1039/tf9565200786

Google Scholar

[19] P.C.L. Stephenson and C.A. Sholl, Tracer correlation factor and atomic displacements due to the collinear interstitialcy mechanism, Phil. Mag. 69 (1994), pp.57-64.

DOI: 10.1080/01418619408242210

Google Scholar

[20] A.R. Allnatt and E.L. Allnatt, Correlation effects in atom transport by the interstitialcy mechanism, Phil. Mag. 64 (1991), pp.777-786.

DOI: 10.1080/01418619108213947

Google Scholar

[21] A. Strohm, T. Voss, W. Frank, P. Laitinen, and J. Räisänen, Self-diffusion of 71Ge and 31Si in Si-Ge alloys, Z. Metallkd. 93 (2002), pp.737-744.

DOI: 10.3139/146.020737

Google Scholar

[22] R. Kube, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E.E. Haller, S. Paul, and W. Lerch, Composition dependence of Si and Ge diffusion in relaxed Si1−xGex alloys, J. Appl. Phys. 107 (2010), p.073520.

DOI: 10.1063/1.3380853

Google Scholar

[23] F. Wilangowski, Tracer diffusion of sodium in a potassium-rich feldspar, Master's thesis, University of Münster, Germany, (2013).

Google Scholar

[24] H. El Maanaoui, F. Wilangowski, A. Maheshwari, H.D. Wiemhöfer, R. Abart, and N.A. Stolwijk, Ionic conductivity in gem-quality single-crystal alkali feldspar from the Eifel: temperature, orientation and composition dependence, Phys. Chem. Minerals 43 (2016).

DOI: 10.1007/s00269-015-0797-y

Google Scholar

[25] F. Hergemöller, The interstitialcy diffusion mechanism in alkali feldspar: Self-diffusion measurements and Monte Carlo simulations, PhD thesis, University of Münster, Germany, (2017).

Google Scholar

[26] G.E. Murch and J.C. Dyre, Correlation effects in ionic conductivity, Crit. Rev. Solid State Mater. Sci. 14 (1989), pp.345-365.

Google Scholar

[27] C.W. McCombie and A.B. Lidiard, Ratio of ionic conductivity to tracer diffusion in interstitialcy migration, Phys. Rev. 101 (1956), pp.1210-1211.

DOI: 10.1103/physrev.101.1210

Google Scholar

[28] S. Divinski, M. Salamon, and H. Mehrer, Silicon diffusion in molybdenum disilicide: correlation effects, Phil. Mag. 84 (2004), pp.757-772.

DOI: 10.1080/14786430310001646781

Google Scholar

[29] Y. Mishin and D. Farkas, Monte Carlo simulation of correlation effects in a random bcc alloy, Phil. Mag. 75 (1997), pp.201-219.

DOI: 10.1080/01418619708210291

Google Scholar

[30] G.E. Murch and S.J. Rothman, Diffusion, correlation, and percolation in a random alloy, Phil. Mag. 43 (1981), pp.229-238.

DOI: 10.1080/01418618108239403

Google Scholar

[31] Y. Deng and H.W.J. Blöte, Monte Carlo study of the site-percolation model in two and three dimensions, Phys. Rev. E 72 (2005), p.016126.

DOI: 10.1103/physreve.72.016126

Google Scholar

[32] A.D. LeClaire, Physical Chemistry: an Advanced Treatise, Vol. 10, chap. Correlation effects in diffusion in solids, Academic Press, New York (1970), pp.261-330.

Google Scholar

[33] N.A. Stolwijk, Atomic transport in semiconductors, diffusion mechanisms and chemical trends, Defect Diffus. Forum 95-98 (1993), pp.895-916.

DOI: 10.4028/www.scientific.net/ddf.95-98.895

Google Scholar

[34] N.A. Stolwijk, B. Schuster, and J. Hölzl, Diffusion of gold in silicon studied by means of neutronactivation analysis and spreading-resistance measurements, Appl. Phys. A 33 (1984), pp.133-140.

DOI: 10.1007/bf00617619

Google Scholar