[1]
H. Mehrer, Diffusion in Solids, Springer, Berlin, (2007).
Google Scholar
[2]
C.A. Sholl, Diffusion correlation factors and atomic displacements for the vacancy mechanism, J. Phys. C 14 (1981), pp.2723-2729.
DOI: 10.1088/0022-3719/14/20/011
Google Scholar
[3]
H. Bakker, N.A. Stolwijk, L. van der Meij, and T.J. Zuurendonk, Computer simulation of diffusion in concentrated binary alloys with short and long range disorder, AIME Nuclear Metallurgy Series 20 (1976), pp.96-108.
Google Scholar
[4]
J.R. Manning, Diffusion Kinetics for Atoms in Crystals, Van Nostrand, Princeton, NJ, (1968).
Google Scholar
[5]
J.R. Manning, Correlation factors for diffusion in nondilute alloys, Phys. Rev. B 4 (1971), pp.1111-1121.
DOI: 10.1103/physrevb.4.1111
Google Scholar
[6]
I.V. Belova and G.E. Murch, Tracer correlation factors in the random alloy, Phil. Mag. 80 (2000), pp.1469-1479.
DOI: 10.1080/01418610008212131
Google Scholar
[7]
F. Wilangowski and N.A. Stolwijk, Vacancy-related diffusion correlation effects in a simple cubic random alloy and on the Na-K sublattice of alkali feldspar, Phil. Mag. 95 (2015), pp.2277-2293.
DOI: 10.1080/14786435.2015.1054918
Google Scholar
[8]
G.E. Murch, Diffusion in Crystalline Solids, chap. Simulation of Diffusion Kinetics with the Monte Carlo Method, Academic Press, New York (1984).
DOI: 10.1016/b978-0-12-522662-2.50012-1
Google Scholar
[9]
N.A. Stolwijk, Diffusion in Ordered Binary Solid Systems, PhD thesis, University of Amsterdam, Netherlands, (1980).
Google Scholar
[10]
F. Wilangowski and N.A. Stolwijk, Monte Carlo simulation of diffusion and ionic conductivity in a simple cubic random alloy via the interstitialcy mechanism, J. Phys. Condens. Matter 27 (2015), p.505401.
DOI: 10.1088/0953-8984/27/50/505401
Google Scholar
[11]
F. Wilangowski and N.A. Stolwijk, A Monte Carlo study of ionic transport in a simple cubic random alloy via the interstitialcy mechanism: Effects of non-collinear and direct interstitial jumps, Phil. Mag. 97 (2017), pp.108-127.
DOI: 10.1080/14786435.2016.1235293
Google Scholar
[12]
H.J. de Bruin and G.E. Murch, Diffusion correlation effects in non-stoichiometric solids, Phil. Mag. 27 (1973), pp.1475-1488.
DOI: 10.1080/14786437308226902
Google Scholar
[13]
K. Compaan and Y. Haven, Correlation factors for diffusion in solids. Part 2.-Indirect interstitial mechanism, Trans. Faraday Soc. 54 (1958), pp.1498-1508.
DOI: 10.1039/tf9585401498
Google Scholar
[14]
G.E. Murch, The Haven ratio in fast ionic conductors, Solid State Ion. 7 (1982), pp.177-198.
DOI: 10.1016/0167-2738(82)90050-9
Google Scholar
[15]
W. Frank, U. Gösele, H. Mehrer, and A. Seeger, Diffusion in Crystalline Solids, chap. Diffusion in Silicon and Germanium, Academic Press, New York (1984).
DOI: 10.1016/b978-0-12-522662-2.50007-8
Google Scholar
[16]
H. Bracht, N.A. Stolwijk, and H. Mehrer, Properties of intrinsic point defects in silicon determined by zinc diffusion under nonequilibrium conditions, Phys. Rev. B 52 (1995), pp.16542-16560.
DOI: 10.1103/physrevb.52.16542
Google Scholar
[17]
G. Bösker, N.A. Stolwijk, J.V. Thordson, U. Södervall, and T.G. Andersson, Diffusion of nitrogen from a buried doping layer in gallium arsenide revealing the prominent role of As interstitials, Phys. Rev. Lett. 81 (1998), pp.3443-3446.
DOI: 10.1103/physrevlett.81.3443
Google Scholar
[18]
K. Compaan and Y. Haven, Correlation factors for diffusion in solids, Trans. Faraday Soc. 52 (1956), pp.786-801.
DOI: 10.1039/tf9565200786
Google Scholar
[19]
P.C.L. Stephenson and C.A. Sholl, Tracer correlation factor and atomic displacements due to the collinear interstitialcy mechanism, Phil. Mag. 69 (1994), pp.57-64.
DOI: 10.1080/01418619408242210
Google Scholar
[20]
A.R. Allnatt and E.L. Allnatt, Correlation effects in atom transport by the interstitialcy mechanism, Phil. Mag. 64 (1991), pp.777-786.
DOI: 10.1080/01418619108213947
Google Scholar
[21]
A. Strohm, T. Voss, W. Frank, P. Laitinen, and J. Räisänen, Self-diffusion of 71Ge and 31Si in Si-Ge alloys, Z. Metallkd. 93 (2002), pp.737-744.
DOI: 10.3139/146.020737
Google Scholar
[22]
R. Kube, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E.E. Haller, S. Paul, and W. Lerch, Composition dependence of Si and Ge diffusion in relaxed Si1−xGex alloys, J. Appl. Phys. 107 (2010), p.073520.
DOI: 10.1063/1.3380853
Google Scholar
[23]
F. Wilangowski, Tracer diffusion of sodium in a potassium-rich feldspar, Master's thesis, University of Münster, Germany, (2013).
Google Scholar
[24]
H. El Maanaoui, F. Wilangowski, A. Maheshwari, H.D. Wiemhöfer, R. Abart, and N.A. Stolwijk, Ionic conductivity in gem-quality single-crystal alkali feldspar from the Eifel: temperature, orientation and composition dependence, Phys. Chem. Minerals 43 (2016).
DOI: 10.1007/s00269-015-0797-y
Google Scholar
[25]
F. Hergemöller, The interstitialcy diffusion mechanism in alkali feldspar: Self-diffusion measurements and Monte Carlo simulations, PhD thesis, University of Münster, Germany, (2017).
Google Scholar
[26]
G.E. Murch and J.C. Dyre, Correlation effects in ionic conductivity, Crit. Rev. Solid State Mater. Sci. 14 (1989), pp.345-365.
Google Scholar
[27]
C.W. McCombie and A.B. Lidiard, Ratio of ionic conductivity to tracer diffusion in interstitialcy migration, Phys. Rev. 101 (1956), pp.1210-1211.
DOI: 10.1103/physrev.101.1210
Google Scholar
[28]
S. Divinski, M. Salamon, and H. Mehrer, Silicon diffusion in molybdenum disilicide: correlation effects, Phil. Mag. 84 (2004), pp.757-772.
DOI: 10.1080/14786430310001646781
Google Scholar
[29]
Y. Mishin and D. Farkas, Monte Carlo simulation of correlation effects in a random bcc alloy, Phil. Mag. 75 (1997), pp.201-219.
DOI: 10.1080/01418619708210291
Google Scholar
[30]
G.E. Murch and S.J. Rothman, Diffusion, correlation, and percolation in a random alloy, Phil. Mag. 43 (1981), pp.229-238.
DOI: 10.1080/01418618108239403
Google Scholar
[31]
Y. Deng and H.W.J. Blöte, Monte Carlo study of the site-percolation model in two and three dimensions, Phys. Rev. E 72 (2005), p.016126.
DOI: 10.1103/physreve.72.016126
Google Scholar
[32]
A.D. LeClaire, Physical Chemistry: an Advanced Treatise, Vol. 10, chap. Correlation effects in diffusion in solids, Academic Press, New York (1970), pp.261-330.
Google Scholar
[33]
N.A. Stolwijk, Atomic transport in semiconductors, diffusion mechanisms and chemical trends, Defect Diffus. Forum 95-98 (1993), pp.895-916.
DOI: 10.4028/www.scientific.net/ddf.95-98.895
Google Scholar
[34]
N.A. Stolwijk, B. Schuster, and J. Hölzl, Diffusion of gold in silicon studied by means of neutronactivation analysis and spreading-resistance measurements, Appl. Phys. A 33 (1984), pp.133-140.
DOI: 10.1007/bf00617619
Google Scholar