[1]
W.J. Buehler, J. Gilfrich, R. Wiley. Effect of Low Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, Journal of Applied Physics 34 (1963) 1475-1477.
DOI: 10.1063/1.1729603
Google Scholar
[2]
K. Ullakko, J. Huang, C. Kantner, R. O'handley, V. Kokorin. Large magnetic field induced strains in NiMnGa single crystals, Applied Physics Letters 69 (1996) (1966).
DOI: 10.1063/1.117637
Google Scholar
[3]
A. Sozinov, N. Lanska, A. Soroka, W. Zou. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite, Applied Physics Letters 102 (2013) 021902.
DOI: 10.1063/1.4775677
Google Scholar
[4]
A. Planes, L. Manosa, M. Acet. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys, Journal of Physics: Condensed Matter 21 (2009) 233201.
DOI: 10.1088/0953-8984/21/23/233201
Google Scholar
[5]
E. Warburg. Magnetische untersuchungen, Annalen der Physik 249 (1881) 141-164.
DOI: 10.1002/andp.18812490510
Google Scholar
[6]
D. Osheroff, R. Richardson, D. Lee. Evidence for a new phase of solid He3, Physical Review Letters 28 (1972) 885.
Google Scholar
[7]
D. Osheroff, W. Gully, R. Richardson, D. Lee. New magnetic phenomena in liquid He3 below 3 mK, Physical Review Letters 29 (1972) 920.
Google Scholar
[8]
V.K. Pecharsky, J. Gschneidner, KA. Giant Magnetocaloric Effect in Gd5(Si2Ge2), Physical Review Letters 78 (1997) 4494-4497.
Google Scholar
[9]
L. Pareti, M. Solzi, F. Albertini, A. Paoluzi. Giant entropy change at the co-occurrence of structural and magnetic transitions in the NiMnGa Heusler alloy, The European Physical Journal B-Condensed Matter and Complex Systems 32 (2003) 303-307.
DOI: 10.1140/epjb/e2003-00102-y
Google Scholar
[10]
V. Khovailo, T. Takagi, A. Vasilev, H. Miki, M. Matsumoto, R. Kainuma. On Order–Disorder (L21→ B2') Phase Transition in Ni2+xMn1-xGa Heusler Alloys, physica status solidi (a) 183 (2001) R1-R3.
DOI: 10.1002/1521-396x(200102)183:2<r1::aid-pssa99991>3.0.co;2-b
Google Scholar
[11]
J. Pons, V. Chernenko, R. Santamarta, E. Cesari. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys, Acta Materialia 48 (2000) 3027-3038.
DOI: 10.1016/s1359-6454(00)00130-0
Google Scholar
[12]
J. Pons, R. Santamarta, V.A. Chernenko, E. Cesari. Long-period martensitic structures of Ni-Mn-Ga alloys studied by high-resolution transmission electron microscopy, Journal of Applied Physics 97 (2005) 083516.
DOI: 10.1063/1.1861137
Google Scholar
[13]
J. Pons, R. Santamarta, V.A. Chernenko, E. Cesari. Structure of the layered martensitic phases of Ni–Mn–Ga alloys, Materials Science and Engineering: A 438 (2006) 931-934.
DOI: 10.1016/j.msea.2006.02.179
Google Scholar
[14]
P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak. Magnetic order and phase transformation in Ni2MnGa, Philosophical Magazine B 49 (1984) 295-310.
DOI: 10.1080/13642817408246515
Google Scholar
[15]
L. Zhou, A. Giri, K. Cho, H. Heinrich, B.S. Majumdar, Y.h. Sohn. Microstructural and Crystallographic Characterization of Ni2+xMn1−xGa Alloys (x= 0.14, 0.16, 0.19, 0.22, and 0.24) by Transmission Electron Microscopy, Metallurgical and Materials Transactions E 1 (2014).
DOI: 10.1007/s40553-014-0023-8
Google Scholar
[16]
Z. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo. Twin relationships of 5M modulated martensite in Ni–Mn–Ga alloy, Acta Materialia 59 (2011) 3390-3397.
DOI: 10.1016/j.actamat.2011.02.014
Google Scholar
[17]
M. Han, F. Kong. Twin boundary structure of the modulated variants in a Ni–Mn–Ga alloy, Journal of Alloys and Compounds 458 (2008) 218-222.
DOI: 10.1016/j.jallcom.2007.04.025
Google Scholar
[18]
X. Jin, M. Marioni, D. Bono, S. Allen, R. O'handley, T. Hsu. Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration, Journal of Applied Physics 91 (2002) 8222-8224.
DOI: 10.1063/1.1453943
Google Scholar
[19]
V. Chernenko, V. L'vov, E. Cesari, J. Pons, R. Portier, S. Zagorodnyuk. New aspects of structural and magnetic behaviour of martensites in Ni-Mn-Ga alloys, Materials Transactions 43 (2002) 856-860.
DOI: 10.2320/matertrans.43.856
Google Scholar
[20]
S. Yang, Y. Liu, C. Wang, X. Liu. Martensite stabilization and thermal cycling stability of two-phase NiMnGa-based high-temperature shape memory alloys, Acta Materialia 60 (2012) 4255-4267.
DOI: 10.1016/j.actamat.2012.04.029
Google Scholar
[21]
C. Wedel, K. Itagaki. High-temperature phase relations in the ternary Ga-Mn-Ni system, Journal of phase equilibria 22 (2001) 324-330.
DOI: 10.1361/105497101770338833
Google Scholar
[22]
S. Yang, C. Wang, X. Liu. Phase equilibria and composition dependence of martensitic transformation in Ni–Mn–Ga ternary system, Intermetallics 25 (2012) 101-108.
DOI: 10.1016/j.intermet.2011.12.009
Google Scholar
[23]
L. Zhou, C. Kammerer, A. Giri, K. Cho, Y.h. Sohn. Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys, Metallurgical and Materials Transactions A 46 (2015) 5572-5587.
DOI: 10.1007/s11661-015-3123-x
Google Scholar
[24]
J. Nyéki, G. Erdélyi, T. Lograsso, D. Schlagel, D. Beke. Ni volume diffusion in Ni2MnGa, Intermetallics 11 (2003) 1075-1077.
DOI: 10.1016/s0966-9795(03)00124-9
Google Scholar
[25]
G. Erdélyi, H. Mehrer, A. Imre, T. Lograsso, D. Schlagel. Self-diffusion in Ni2MnGa, Intermetallics 15 (2007) 1078-1083.
DOI: 10.1016/j.intermet.2007.01.001
Google Scholar
[26]
A. Donaldson, R.D. Rawlings. The diffusion of nickel and gallium in the intermetallic compound NiGa, Acta Metallurgica 24 (1976) 285-291.
DOI: 10.1016/0001-6160(76)90002-x
Google Scholar
[27]
N. Stolwijk, M.v. Gend, H. Bakker. Self-diffusion in the intermetallic compound CoGa, Philosophical Magazine A 42 (1980) 783-808.
DOI: 10.1080/01418618008239385
Google Scholar
[28]
H. Mehrer, S. Peteline, M. Huang, Y. Chang. Self-diffusion in nickel-manganese alloys. Defect and Diffusion Forum, vol. 237: Trans Tech Publ, 2005. pp.352-357.
DOI: 10.4028/www.scientific.net/ddf.237-240.352
Google Scholar
[29]
E. Elcock, C. McCombie. Vacancy diffusion in binary ordered alloys, Physical Review 109 (1958) 605.
DOI: 10.1103/physrev.109.605
Google Scholar
[30]
E. Elcock. Vacancy diffusion in ordered alloys, Proceedings of the Physical Society 73 (1959) 250.
Google Scholar
[31]
H. Mehrer. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, Springer Science & Business Media, (2007).
Google Scholar
[32]
R. Nakamura, K. Takasawa, Y. Yamazaki, Y. Iijima. Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl, Intermetallics 10 (2002) 195-204.
DOI: 10.1016/s0966-9795(01)00125-x
Google Scholar
[33]
H. Wei, X. Sun, Q. Zheng, H. Guan, Z. Hu. Estimation of interdiffusivity of the NiAl Phase in Ni–Al binary system, Acta Materialia 52 (2004) 2645-2651.
DOI: 10.1016/j.actamat.2004.02.012
Google Scholar
[34]
Z. Wang, M. Matsumoto, S.T. Pantelides, K. Oikawa, J. Qiu, T. Takagi, J. Tani. Properties of Ni2MnGa shape memory alloy prepared by spark plasma sintering. Materials science forum, vol. 327: Trans Tech Publ, 2000. pp.489-492.
DOI: 10.4028/www.scientific.net/msf.327-328.489
Google Scholar
[35]
H. Seiner, O. Heczko, P. Sedlák, L. Bodnárová, M. Novotný, J. Kopeček, M. Landa. Combined effect of structural softening and magneto-elastic coupling on elastic coefficients of Ni Mn Ga austenite, Journal of Alloys and Compounds 577 (2013).
DOI: 10.1016/j.jallcom.2012.01.007
Google Scholar
[36]
L. Zhou, A. Giri, K. Cho, Y.h. Sohn. Mechanical anomaly observed in Ni-Mn-Ga alloys by nanoindentation, Acta Materialia 118 (2016) 54-63.
DOI: 10.1016/j.actamat.2016.07.029
Google Scholar
[37]
L. Zhou, A. Giri, K. Cho, Y. Sohn. A Combinatorial Study for Interdiffusion, Crystallography and Mechanical Behavior of Ni-Mn-Ga Alloys. Defect & Diffusion Forum, vol. 371, (2016).
DOI: 10.4028/www.scientific.net/ddf.371.153
Google Scholar
[38]
L. Mañosa, A. Gonzalez-Comas, E. Obradó, A. Planes, V. Chernenko, V. Kokorin, E. Cesari. Anomalies related to the TA2-phonon-mode condensation in the Heusler Ni2MnGa alloy, Physical Review B 55 (1997) 11068.
DOI: 10.1103/physrevb.55.11068
Google Scholar
[39]
M. Thomasová, P. Sedlák, H. Seiner, M. Janovská, M. Kabla, D. Shilo, M. Landa. Young's moduli of sputter-deposited NiTi films determined by resonant ultrasound spectroscopy: Austenite, R-phase, and martensite, Scripta Materialia 101 (2015) 24-27.
DOI: 10.1016/j.scriptamat.2015.01.009
Google Scholar
[40]
L. Zhou, A. Mehta, A. Giri, K. Cho, Y. Sohn. Martensitic transformation and mechanical properties of Ni49+xMn36–xIn15 (x= 0, 0.5, 1.0, 1.5 and 2.0) alloys, Materials Science and Engineering: A 646 (2015) 57-65.
DOI: 10.1016/j.msea.2015.08.034
Google Scholar
[41]
L. Zhou, M.M. Schneider, A. Giri, K. Cho, Y. Sohn. Microstructural and crystallographic characteristics of modulated martensite, non-modulated martensite, and pre-martensitic tweed austenite in Ni-Mn-Ga alloys, Acta Materialia 134 (2017) 93-103.
DOI: 10.1016/j.actamat.2017.05.050
Google Scholar
[42]
P. Müllner, A.H. King. Deformation of hierarchically twinned martensite, Acta Materialia 58 (2010) 5242-5261.
DOI: 10.1016/j.actamat.2010.05.048
Google Scholar
[43]
V.A. Chernenko, J. Pons, C. Seguı, E. Cesari. Premartensitic phenomena and other phase transformations in Ni–Mn–Ga alloys studied by dynamical mechanical analysis and electron diffraction, Acta Materialia 50 (2002) 53-60.
DOI: 10.1016/s1359-6454(01)00320-2
Google Scholar
[44]
U. Gaitzsch, J. Drache, K. McDonald, P. Müllner, P. Lindquist. Obtaining of Ni-Mn-Ga magnetic shape memory alloy by annealing electrochemically deposited Ga/Mn/Ni layers, Thin Solid Films 522 (2012) 171-174.
DOI: 10.1016/j.tsf.2012.08.019
Google Scholar
[45]
P. Zheng, P. Lindquist, B. Yuan, P. Müllner, D.C. Dunand. Fabricating Ni–Mn–Ga microtubes by diffusion of Mn and Ga into Ni tubes, Intermetallics 49 (2014) 70-80.
DOI: 10.1016/j.intermet.2014.01.014
Google Scholar