Diffusion and its Application in NiMnGa Alloys

Article Preview

Abstract:

Heusler NiMnGa alloys are often categorized as ferromagnetic shape memory alloys or magnetocaloric materials, which are important for both practical applications and fundamental research. The NiMnGa alloys undergo a series of diffusion and diffusionless transformation from high temperature to low temperature. Among these transformation, martensitic transformation from austenitic phase to martensitic phase is critical in determining the properties of the alloys. Although martensitic transformation is considered diffusionless, diffusion also has important applications in the research of NiMnGa alloysDiffusion couples along with equilibrium alloys have been used to determine the ternary phase diagrams in NiMnGa alloys. Phase diagrams are important in selecting NiMnGa alloys, in particular two-phase NiMnGa alloys for practical applications. Furthermore, the diffusion couples effectively assist in the determination of compositions that exhibit martensitic transformation temperature near room temperature. Diffusion coefficients have been assessed for NiMnGa alloys. Tracer diffusivity of Ni, Mn and Ga was reported in a wide temperature range and followed Arrhenius behavior. Two different activation energies were obtained, corresponding to B2 and L21 crystal structure, respectively. Interdiffusion coefficients for NiMnGa alloys with B2 crystal structure are measured, which showed that Ni diffuses the fastest, followed by Mn then Ga. The diffusion coefficients provide useful information for fabricating NiMnGa alloys through diffusional process.A combinatorial approach involving diffusion couples and advance characterization has been developed to investigate the mechanical properties, microstructure and crystallography of NiMnGa alloys rapidly and systematically over a large compositional range. The composition-dependent modulus and hardness for NiMnGa alloys was extracted from the diffusion couples with the help of nanoindentation. Martensitic phases with non-modulated and various modulated crystal structures, and austenitic phase were identified in the interdiffusion zones by transmission electron microscopy. The results demonstrate the capability of using diffusion couples to speed up the discovery of new NiMnGa alloys or other similar alloys showing martensitic transformation.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 19)

Pages:

80-95

Citation:

Online since:

November 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.J. Buehler, J. Gilfrich, R. Wiley. Effect of Low Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, Journal of Applied Physics 34 (1963) 1475-1477.

DOI: 10.1063/1.1729603

Google Scholar

[2] K. Ullakko, J. Huang, C. Kantner, R. O'handley, V. Kokorin. Large magnetic field induced strains in NiMnGa single crystals, Applied Physics Letters 69 (1996) (1966).

DOI: 10.1063/1.117637

Google Scholar

[3] A. Sozinov, N. Lanska, A. Soroka, W. Zou. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite, Applied Physics Letters 102 (2013) 021902.

DOI: 10.1063/1.4775677

Google Scholar

[4] A. Planes, L. Manosa, M. Acet. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys, Journal of Physics: Condensed Matter 21 (2009) 233201.

DOI: 10.1088/0953-8984/21/23/233201

Google Scholar

[5] E. Warburg. Magnetische untersuchungen, Annalen der Physik 249 (1881) 141-164.

DOI: 10.1002/andp.18812490510

Google Scholar

[6] D. Osheroff, R. Richardson, D. Lee. Evidence for a new phase of solid He3, Physical Review Letters 28 (1972) 885.

Google Scholar

[7] D. Osheroff, W. Gully, R. Richardson, D. Lee. New magnetic phenomena in liquid He3 below 3 mK, Physical Review Letters 29 (1972) 920.

Google Scholar

[8] V.K. Pecharsky, J. Gschneidner, KA. Giant Magnetocaloric Effect in Gd5(Si2Ge2), Physical Review Letters 78 (1997) 4494-4497.

Google Scholar

[9] L. Pareti, M. Solzi, F. Albertini, A. Paoluzi. Giant entropy change at the co-occurrence of structural and magnetic transitions in the NiMnGa Heusler alloy, The European Physical Journal B-Condensed Matter and Complex Systems 32 (2003) 303-307.

DOI: 10.1140/epjb/e2003-00102-y

Google Scholar

[10] V. Khovailo, T. Takagi, A. Vasilev, H. Miki, M. Matsumoto, R. Kainuma. On Order–Disorder (L21→ B2') Phase Transition in Ni2+xMn1-xGa Heusler Alloys, physica status solidi (a) 183 (2001) R1-R3.

DOI: 10.1002/1521-396x(200102)183:2<r1::aid-pssa99991>3.0.co;2-b

Google Scholar

[11] J. Pons, V. Chernenko, R. Santamarta, E. Cesari. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys, Acta Materialia 48 (2000) 3027-3038.

DOI: 10.1016/s1359-6454(00)00130-0

Google Scholar

[12] J. Pons, R. Santamarta, V.A. Chernenko, E. Cesari. Long-period martensitic structures of Ni-Mn-Ga alloys studied by high-resolution transmission electron microscopy, Journal of Applied Physics 97 (2005) 083516.

DOI: 10.1063/1.1861137

Google Scholar

[13] J. Pons, R. Santamarta, V.A. Chernenko, E. Cesari. Structure of the layered martensitic phases of Ni–Mn–Ga alloys, Materials Science and Engineering: A 438 (2006) 931-934.

DOI: 10.1016/j.msea.2006.02.179

Google Scholar

[14] P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak. Magnetic order and phase transformation in Ni2MnGa, Philosophical Magazine B 49 (1984) 295-310.

DOI: 10.1080/13642817408246515

Google Scholar

[15] L. Zhou, A. Giri, K. Cho, H. Heinrich, B.S. Majumdar, Y.h. Sohn. Microstructural and Crystallographic Characterization of Ni2+xMn1−xGa Alloys (x= 0.14, 0.16, 0.19, 0.22, and 0.24) by Transmission Electron Microscopy, Metallurgical and Materials Transactions E 1 (2014).

DOI: 10.1007/s40553-014-0023-8

Google Scholar

[16] Z. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo. Twin relationships of 5M modulated martensite in Ni–Mn–Ga alloy, Acta Materialia 59 (2011) 3390-3397.

DOI: 10.1016/j.actamat.2011.02.014

Google Scholar

[17] M. Han, F. Kong. Twin boundary structure of the modulated variants in a Ni–Mn–Ga alloy, Journal of Alloys and Compounds 458 (2008) 218-222.

DOI: 10.1016/j.jallcom.2007.04.025

Google Scholar

[18] X. Jin, M. Marioni, D. Bono, S. Allen, R. O'handley, T. Hsu. Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration, Journal of Applied Physics 91 (2002) 8222-8224.

DOI: 10.1063/1.1453943

Google Scholar

[19] V. Chernenko, V. L'vov, E. Cesari, J. Pons, R. Portier, S. Zagorodnyuk. New aspects of structural and magnetic behaviour of martensites in Ni-Mn-Ga alloys, Materials Transactions 43 (2002) 856-860.

DOI: 10.2320/matertrans.43.856

Google Scholar

[20] S. Yang, Y. Liu, C. Wang, X. Liu. Martensite stabilization and thermal cycling stability of two-phase NiMnGa-based high-temperature shape memory alloys, Acta Materialia 60 (2012) 4255-4267.

DOI: 10.1016/j.actamat.2012.04.029

Google Scholar

[21] C. Wedel, K. Itagaki. High-temperature phase relations in the ternary Ga-Mn-Ni system, Journal of phase equilibria 22 (2001) 324-330.

DOI: 10.1361/105497101770338833

Google Scholar

[22] S. Yang, C. Wang, X. Liu. Phase equilibria and composition dependence of martensitic transformation in Ni–Mn–Ga ternary system, Intermetallics 25 (2012) 101-108.

DOI: 10.1016/j.intermet.2011.12.009

Google Scholar

[23] L. Zhou, C. Kammerer, A. Giri, K. Cho, Y.h. Sohn. Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys, Metallurgical and Materials Transactions A 46 (2015) 5572-5587.

DOI: 10.1007/s11661-015-3123-x

Google Scholar

[24] J. Nyéki, G. Erdélyi, T. Lograsso, D. Schlagel, D. Beke. Ni volume diffusion in Ni2MnGa, Intermetallics 11 (2003) 1075-1077.

DOI: 10.1016/s0966-9795(03)00124-9

Google Scholar

[25] G. Erdélyi, H. Mehrer, A. Imre, T. Lograsso, D. Schlagel. Self-diffusion in Ni2MnGa, Intermetallics 15 (2007) 1078-1083.

DOI: 10.1016/j.intermet.2007.01.001

Google Scholar

[26] A. Donaldson, R.D. Rawlings. The diffusion of nickel and gallium in the intermetallic compound NiGa, Acta Metallurgica 24 (1976) 285-291.

DOI: 10.1016/0001-6160(76)90002-x

Google Scholar

[27] N. Stolwijk, M.v. Gend, H. Bakker. Self-diffusion in the intermetallic compound CoGa, Philosophical Magazine A 42 (1980) 783-808.

DOI: 10.1080/01418618008239385

Google Scholar

[28] H. Mehrer, S. Peteline, M. Huang, Y. Chang. Self-diffusion in nickel-manganese alloys. Defect and Diffusion Forum, vol. 237: Trans Tech Publ, 2005. pp.352-357.

DOI: 10.4028/www.scientific.net/ddf.237-240.352

Google Scholar

[29] E. Elcock, C. McCombie. Vacancy diffusion in binary ordered alloys, Physical Review 109 (1958) 605.

DOI: 10.1103/physrev.109.605

Google Scholar

[30] E. Elcock. Vacancy diffusion in ordered alloys, Proceedings of the Physical Society 73 (1959) 250.

Google Scholar

[31] H. Mehrer. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, Springer Science & Business Media, (2007).

Google Scholar

[32] R. Nakamura, K. Takasawa, Y. Yamazaki, Y. Iijima. Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl, Intermetallics 10 (2002) 195-204.

DOI: 10.1016/s0966-9795(01)00125-x

Google Scholar

[33] H. Wei, X. Sun, Q. Zheng, H. Guan, Z. Hu. Estimation of interdiffusivity of the NiAl Phase in Ni–Al binary system, Acta Materialia 52 (2004) 2645-2651.

DOI: 10.1016/j.actamat.2004.02.012

Google Scholar

[34] Z. Wang, M. Matsumoto, S.T. Pantelides, K. Oikawa, J. Qiu, T. Takagi, J. Tani. Properties of Ni2MnGa shape memory alloy prepared by spark plasma sintering. Materials science forum, vol. 327: Trans Tech Publ, 2000. pp.489-492.

DOI: 10.4028/www.scientific.net/msf.327-328.489

Google Scholar

[35] H. Seiner, O. Heczko, P. Sedlák, L. Bodnárová, M. Novotný, J. Kopeček, M. Landa. Combined effect of structural softening and magneto-elastic coupling on elastic coefficients of Ni Mn Ga austenite, Journal of Alloys and Compounds 577 (2013).

DOI: 10.1016/j.jallcom.2012.01.007

Google Scholar

[36] L. Zhou, A. Giri, K. Cho, Y.h. Sohn. Mechanical anomaly observed in Ni-Mn-Ga alloys by nanoindentation, Acta Materialia 118 (2016) 54-63.

DOI: 10.1016/j.actamat.2016.07.029

Google Scholar

[37] L. Zhou, A. Giri, K. Cho, Y. Sohn. A Combinatorial Study for Interdiffusion, Crystallography and Mechanical Behavior of Ni-Mn-Ga Alloys. Defect & Diffusion Forum, vol. 371, (2016).

DOI: 10.4028/www.scientific.net/ddf.371.153

Google Scholar

[38] L. Mañosa, A. Gonzalez-Comas, E. Obradó, A. Planes, V. Chernenko, V. Kokorin, E. Cesari. Anomalies related to the TA2-phonon-mode condensation in the Heusler Ni2MnGa alloy, Physical Review B 55 (1997) 11068.

DOI: 10.1103/physrevb.55.11068

Google Scholar

[39] M. Thomasová, P. Sedlák, H. Seiner, M. Janovská, M. Kabla, D. Shilo, M. Landa. Young's moduli of sputter-deposited NiTi films determined by resonant ultrasound spectroscopy: Austenite, R-phase, and martensite, Scripta Materialia 101 (2015) 24-27.

DOI: 10.1016/j.scriptamat.2015.01.009

Google Scholar

[40] L. Zhou, A. Mehta, A. Giri, K. Cho, Y. Sohn. Martensitic transformation and mechanical properties of Ni49+xMn36–xIn15 (x= 0, 0.5, 1.0, 1.5 and 2.0) alloys, Materials Science and Engineering: A 646 (2015) 57-65.

DOI: 10.1016/j.msea.2015.08.034

Google Scholar

[41] L. Zhou, M.M. Schneider, A. Giri, K. Cho, Y. Sohn. Microstructural and crystallographic characteristics of modulated martensite, non-modulated martensite, and pre-martensitic tweed austenite in Ni-Mn-Ga alloys, Acta Materialia 134 (2017) 93-103.

DOI: 10.1016/j.actamat.2017.05.050

Google Scholar

[42] P. Müllner, A.H. King. Deformation of hierarchically twinned martensite, Acta Materialia 58 (2010) 5242-5261.

DOI: 10.1016/j.actamat.2010.05.048

Google Scholar

[43] V.A. Chernenko, J. Pons, C. Seguı, E. Cesari. Premartensitic phenomena and other phase transformations in Ni–Mn–Ga alloys studied by dynamical mechanical analysis and electron diffraction, Acta Materialia 50 (2002) 53-60.

DOI: 10.1016/s1359-6454(01)00320-2

Google Scholar

[44] U. Gaitzsch, J. Drache, K. McDonald, P. Müllner, P. Lindquist. Obtaining of Ni-Mn-Ga magnetic shape memory alloy by annealing electrochemically deposited Ga/Mn/Ni layers, Thin Solid Films 522 (2012) 171-174.

DOI: 10.1016/j.tsf.2012.08.019

Google Scholar

[45] P. Zheng, P. Lindquist, B. Yuan, P. Müllner, D.C. Dunand. Fabricating Ni–Mn–Ga microtubes by diffusion of Mn and Ga into Ni tubes, Intermetallics 49 (2014) 70-80.

DOI: 10.1016/j.intermet.2014.01.014

Google Scholar