p.1
p.73
p.95
p.107
p.141
p.159
p.191
Self-Diffusion, Solute-Diffusion and Interdiffusion in Binary Intermetallics
Abstract:
800x600 Intermetallics are compounds of two metals or of metal(s) and semimetal(s). Their structures are usually different from those of the constituents. Some intermetallics are interesting functional materials, others have attracted attention as high-temperature structural materials. We remind the reader of some fundamentals of solid-state diffusion and to the major techniques for tracer diffusion measurements, interdiffusion studies and the growth kinetics of layers in solid diffusion couples. Starting from self-diffusion, which is the most basic diffusion phenomenon in any solid, the paper covers the main features of diffusion in binary intermetallics from the systems Cu-Zn, Ni-Al, Fe-Al, Mg-Al, Ni-Ge, Ni-Ga, Fe-Si, Ti-Al, Ni-Mn, Mo-Si, Co-Nb and Ni-Nb.. We illustrate the influence of phase transitions on diffusion and point out some common features of diffusion in intermetallics. We discuss in detail diffusion in silicides of iron, molybdenum and of silicides of refractory metals. We also consider aluminides of iron, nickel, and titanium and in the aluminium-magnesium system. We consider diffusion in intermetallics of the cobalt-niobium and nickel-niobium system and in in the Nb-Sn and V-Ga systems. We finish with some remarks about grain boundary diffusion in intermetallics. Normal 0 21 false false false UK X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}
Info:
Periodical:
Pages:
1-72
Citation:
Online since:
September 2014
Authors:
Keywords:
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] J. H. Westbrook, R. L. Fleischer (Eds. ), Intermetallic Compounds, Vol. 1 Principles, Vol. 2 Practise, J. Wiley and Sons Ltd., (1995).
[2] G. Sauthoff, Intermetallics, VCH Weinheim, (1995).
[3] J. Philibert, Atom Movements - Diffusion and Mass Transport in Solids, Les Editions de Physique, Les Ulis, (1991).
[4] Th. Heumann, Diffusion in Metallen, Springer-Verlag, Berlin, (1992).
[5] H. Mehrer, Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-controlled Processes, Springer Series in Solid State Sciences 155, 2007. Paperback edition 2011. Japanese translation (2012).
[6] H. Mehrer (Vol. Ed. ), Diffusion in Solid Metals and Alloys, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series Vol. III/26, Springer Verlag, (1990).
[7] H. Bakker, Self-diffusion in Binary Alloys and Intermetallic Phases, in: Diffusion in Solid Metals and Alloys, Chapt. 4 in.
[6] .
[8] H. Bakker, Tracer Diffusion in Concentrated Alloys, in: Diffusion in Crystalline Solids, G.E. Murch, A. S Nowick (Eds. ), Academic Press, Orlando, 1984, p.189.
[9] H. Wever, Defect and Diffusion Forum 83, 55 (1992).
[10] H. Mehrer, Diffusion in Intermetallics, Materials Transactions, JIM, 37, 1259 – 1280 (1996).
[11] M. Koiwa, H. Numakura, S. Ishioka, Diffusion in L12 Type Intermetallics, Defect and Diffusion Forum 143 - 147, 209 (1997).
[121] H. Mehrer, F. Wenwer, Diffusion in Metals, in: Diffusion in Condensed Matter, J. Kärger, P. Heitjans, R. Haberlandt (Eds. ), Verlag Vieweg, Braunschweig, 1998, p.1.
[13] H. Nakajima, W. Sprengel, K. Nonaka, Intermetallics 4, 517 (1996).
[14] H. Mehrer, Chr. Herzig, Diffusion in Intermetallic Compounds – Recent Progress, in: Advances in Science and Technology, Mass and Charge Transport in Inorganic Materials: Fundamentals to Devices, P. Vicenzini, V. Buscaglia (Eds. ), Techna Srl. 2000, p.187.
[15] Chr. Herzig, S.V. Divinski, St. Frank, T. Przeorski, Defect and Diffusion Forum 194 - 199, 317 (2001).
[16] Chr, Herzig, S.V. Divinski, Bulk and Grainboundary Diffusion in Intermetallic Compounds, in: Diffusion Processes in: Advaanced Technological Materials, D. Gupta (Ed. ), William Andrew Publishing, Norwich, New York, Springer (2000).
[17] H. Mehrer, Diffusion: Introduction and Case Studies in Metals and Binary Alloys, in: Diffusion in Condensed Matter - Methods, Materials, Models, P. Heitjans, J. Kärger (Eds. ), Springer-Verlag, 2005, p.3.
[18] H. Mehrer, S. Divinski, Diffusion in Metallic Elements and Intermetallics, Defect and Diffusion Forum 289 – 291, 15 (2009).
[19] A. Gude, H. Mehrer, Diffusion in the DO3 type Intermetallic Phase Fe3Si, Phil. Mag. A 76, 1 - 29 (1997).
[20] M. Eggersmann, B. Sepiol, G. Vogl, H. Mehrer Diffusion in the Intermetallic Phases of the Fe-Al system studied by Tracer and Mößbauer Techniques, Defect and Diffusion Forum, 143 - 147, 339 (1997).
[21] F. Sauer and V. Freise, Z. Elektrochemie 66, 353 (1966).
[22] F.J.A. denBroeder, Scr. Metall. 3, 321 (1969).
[23] Th. Heumann, Z. Phys. Chem. 201, 168 (1952).
[24] G.V. Kidson, Some Aspects of the Growth of Diffusion Layers in Binary Systems, J. Nuclear Materials 3, 21 (1961).
[25] W. Sprengel, M. Denkinger, H. Mehrer, Multiphase Diffusion in the Cobalt-Niobium and Nickel-Niobium Systems: Part I: Solid-solid Phase Equilibria and Growth of Intermetallic Phases, Intermetallics 2, 127 - 135 (1994).
[26] W. Sprengel, M. Denkinger, H. Mehrer, Multiphase Diffusion in the Cobalt-Niobium and Nickel-Niobium Systems: Part II: Interdiffusion, Intermetallics 2, 137 - 146 (1994).
[27] C. Wagner, Acta Metallurgica 17, 99 (1969).
[28] S. Prasad, A. Paul, Growth Mechanism of Phases by Interduffusion and Atomic Mechanism of Diffusion in the Molybdenum-Silicon System, Intermetallics 19, 1191 (2011).
[29] S. Roy, S.V. Divinski, A. Paul, Reactive Diffusion in the Ti-Si System and the Significance of the Parabolic Growth Constant, Phil. Mag., in press.
[30] S. Roy, S. Prasad, S.V. Divinski, A. Paul, Diffusion Pattern in MSi2 and M5Si4 Silicides in Group VB (M= V, Nb, Ta) and VIB (M= Mo, W) Refractory Metal –Silicon –Systems, in press.
[31] J. Sommer, Chr. Herzig, J. Appl. Phys. 72, 2758 – 2766 (1992).
[32] M. Arioka, M. Koiwa, S. Ishioka, Acta. Metall. 37, 269 (1989).
[33] I.V. Belova, G. E. Murch, Philos. Mag. A82, 269 (2002).
[34] N.A. Stolwijk, M. van Gend, H. Bakker, Philos. Mag. A42, 283 (1980).
[35] H. Bakker, N. A: Stolwijk, M.A. Hoetjes-Eijkel, Philos. Mag. A43, 251 (1981).
[36] C.R. Kao, Y.A. Chang, Intermetallics 1, 237 (1993).
[37] S.V. Divinski, L.N. Larikov, J. Phys. Condensed Matter 35, 7377 (1997).
[38] I.V. Belova, G.E. Murch, Intermetallics 6, 115 (1998).
[39] K. Nonaka, T. Arayashiki, H. Nakajima, A. Almazouzi, T. Ikeda, K. Tanaka, H. Numakura, M. Koiwa, Self-diffusion in L12-type Intermetallic Compounds Ni3Ge and Ni3Ga, Defect and Diffusion Forum 143 - 147, 209 (1997).
[40] M. Koiwa, S. Ishioka, Philos. Mag. A 48, 1 (1983).
[41] M. Koiwa, H. Numakura, S. Ishioka, Diffusion in L12-type Intermetallics, Defect and Diffusion Forum 143 - 147, 209 (1997).
[42] F. M. d'Heurle, P. Gas, J. Philibert, Solid State Phenomena 41, 93 (1995).
[43] F. M. d'Heurle, P. Gas, C. Lavoie, J. Philibert, Z. Metallkd. 95, 852 (2004).
[44] A.B. Kuper, D. Lazarus, J.R. Manning, C.T. Tomizuka, Phys. Rev. 104, 1536 (1956).
[45] S. Peteline, H. Mehrer, M. -L. Huang, Y. A. Chang, Self-Diffusion in Nickel-Manganese Alloys, Defect and Diffusion Forum 237 240, 352 (2005).
[46] T.B. Massalski, Binary Alloy Phase Diagrams, Metals Park, Ohio, ASM, (1986).
[47] A. Gude, B. Sepiol, G. Vogl, H. Mehrer, A Study of Diffusion in the Intermetallic Phase Fe3Si by Tracer and Mößbauer Techniques, Defect and Diffusion Forum 143-147, 351-(1997).
[48] A. Gude, K. Freitag, B. Sepiol, G. Vogl, H. Mehrer, Diffusion in the Intermetallic Phase Fe3Si under Hydrostatic Pressure, phys. stat. sol. (b) 197, 299 -307 (1996).
[49] E.A. Kümmerle, K. Badura, B. Sepiol, H. Mehrer, H. -E. Schaefer, Thermal Formation of Vacancies in Fe3Si, Phys. Rev. B 52, R6947 (1995).
[50] H. Mehrer, The Effect of Pressure on Diffusion, Defect and Diffusion Forum 129 - 130, 57 - 74 (1996).
[51] M. Salamon, H. Mehrer, Diffusion in the B20-type phase FeSi, Philos. Mag. A 79, 2137 - 2155 (1999).
[52] I. Rihimäki, A. Virtanen, P. Pusa, M. Salamon, H. Mehrer, J. Räisänen, Si Self-diffusion in cubic B20 structured FeSi, Europhys. Letters 82, 66005 (2008).
[53] M. Salamon, K. Ito, M. Yamaguchi, K. Freitag, H. Mehrer, Diffusion of 71Ge in Molybdenum Disilicide, Defect and Diffusion Forum 194 - 199, 523 - 529 (2001).
[54] M. Salamon, H. Mehrer, Diffusion of 71Ge and 99Mo in Molybdenum Disilicide, Defect and Diffusion Forum, 216 – 217, 161 – 168 (2003).
[55] M. Salamon, A. Strohm, T. Voss, P. Laitinen, I. Rihimäki, S.V. Divinski, W. Frank, J. Räisänen, H. Mehrer, Self-Diffusion of Silicon in Molybdenum Disilicide, Philos. Mag., 84, 737-756 (2004).
[56] M. Salamon, H. Mehrer, Diffusion in Molybdenum Disilicide, Z. Metallkd., 8, 833 (2005).
[57] X.Y. Zhang, W. Sprengel, T. EM. Staab, H. Inui, H. -E. Schaefer, Phys. Rev. Lett. 92, 155502-1 (2004).
[58] S.V. Divinski, M. Salamon, H. Mehrer, Silicon Diffusion in Molybdenum Disilicide: Correlation Effects, Philos. Mag., 84, 757 – 772 (2004).
[59] I.V. Belova, G.E. Murch, H. Mehrer, Diffusion Correlation in Molybdenum Disilicide, Philos. Mag. 91, 3727 – 3743 (2011).
[60] P. Gas, G. Scilla, A. Michel, F.K. Legouses, O. Thomas, F.M. d'Heurle, J. Appl. Phys. 63, 5335 (1988).
[61] J.K. Yoon, J.K. Lee, K.H. Lee, J.Y. Byun, G.H. Kim, K.T. Hong, Intermetallics 11, 687 (2003).
[62] P.C. Tortorici, M.A. Dayananda, Metall. Mater. Trans. A 30, 545 (1999).
[63] Yu. Mishin, Chr. Herzig, Acta Mater. 48, 589 (2000).
[64] O. Kubaschewski, Iron-Binary Phase Diagrams, Berlin, Springer-Verlag, (1982).
[65] W. Köster, T. Gödecke, Z. Metallkd. 71, 785 (1980).
[66] M. Eggersmann, H. Mehrer, Diffusion in Intermetallic Phases of the Fe-Al System, Philos. Mag. A 80, 1219 - 1244 (2000).
[67] Zs. Tökei, J. Bernardini, P. Gas, D. L. Beke, Acta Mater. 45, 541 (1997).
[68] R. Kerl, J. Wolff, Th. Hehenkamp, Intermetallics 7, 301-308 (1999).
[69] } H. -E. Schaefer, R. Würschum, M. Sob, W. Zak, W.Z. Yu, W. Eckert, F. Banhart, Phys. Rev. B 41, 11869 (1990).
[70] G. Vogl, B. Sepiol, Acta metall. Mater. 42, 3175 (1994).
[71] R. Feldwisch, B. Sepiol, G. Vogl, Acta metall. Mater. 43, 2033 (1995).
[72] M. Salamon, D. Fuks, H. Mehrer Interdiffusion and Al Self-diffusion in Iron-Aluminides, Defect and Diffusion Forum, 237 - 240, 444 - 449 (2005).
[73] M. Salamon, H. Mehrer, Interdiffusion, Kirkendall Effect and Al Self-diffusion in Fe-Al Alloys, Z. Metallkd., 96, 1 (2005).
DOI: 10.3139/146.018071
[74] V. Liubich, S. Dorfman, D. Fuks, H. Mehrer, Thermodynamic Factor in Interdiffusion in Fe-Al Aloys from the diffuse X-ray Scattering, Mat. Sci. Eng. A 256, 65 - 68 (1998).
[75] S. Peteline, E. M. Tanguep Nijokep, S. Divinski, H. Mehrer, Diffusion of Solute Elements in Fe3Al, Defect and Diffusion Forum, 216 – 217, 175 – 180 (2003).
[76] H. Okamoto, J. Phase Equilibria 14, 257 (1993).
[77] M.B. Bronfin, G.S. Bulatov, I.A. Drugova, Fiz. Metal. Metalloved. 40, 363 (1975).
[78] K. Hoshino, S.J. Rothman, R.S. Averbach, Acta Metall. 36, 1271 (1988).
[79] Y. Shi, G. Frohberg, H. Wever, Phys. Status Solidi A 191, 361 (1995).
[80] St. Frank, U. Södervall, Chr. Herzig, Phys. Status Solidi B 191, 45 (1995).
[81] T. Ikeda, A. Almazouzi, H. Numakura, M. Koiwa, W. Sprengel, H. Nakajima, Acta Mater. 46, 5369 (1998).
[82] M. Watanabe, Z. Horita, M. Nemoto, Measurements of Interdiffusion Coefficients in Ni-Al System, Defect and Diffusion Forum 143-147, 345 (1997).
[83] K. Fujiwara, Z. Horita, Acta Mater. 50, 1571 (2002).
[84] S.V. Divinski, St. Frank, U. Södervall, Chr. Herzig, Acta Mater. 46, 4369 (1998).
[85] Y. Minamino, H. Yoshida, S. B . Jung, K. Hirano, T. Yamane, Diffusion of Pt and Mo in Ni and Ni3Al, Defect and Diffusion Forum 143-147, 257 (1997).
[86] St. Frank, U. Södervall, Chr. Herzig, Self- and Impurity Diffusion of Ni, Ga, Ge, Ti, Nb and B in the L12-type Intermetallic Compound Ni3Al, Defect and Diffusion Forum 143-147, 245 (1997).
[87] S.B. Jung, Y. Minamino, H. Araki, T. Yamane, K. Hirano, S. Saji, Defect and Diffusion Forum 95-98, 859 (1993).
[88] G.F. Hancock, B.R. McDonnell, Phys. Status Solidi a4, 143 (1971).
[89] St. Frank, S.V. Divinski, U. Södervall, Chr. Herzig, Acta Mater: 49, 12399 (2001).
[90] Y. Minamino, Y. Koizumi, N. Tsuji, M. Morioka, K. Hirano, Y. Shirai, Science and Technology of Advanced Materials 1, 237 (2002).
[91] Chr. Herzig, T. Przeorski, Y. Mishin, Intermetallics 7, 389 (1999).
[92] T. Ikeda, H. Kadowaki, H. Nakajima, Acta Mater. 49, 3475 (2001).
[93] W. Sprengel, N. Oikawa, H. Nakajima, Intermetallics 4, 185 (1996).
[94] Chr. Herzig, M. Friesel, D. Derdau, S.V. Divinski, Intermetallics 7, 1141 (1991).
[95] Chr. Herzig, T. Prezeorski, M. Friesel, F. Hisker, S.V. Divinski, Intermetallics 9, 461 (2001).
[96] A.F. Voter, S.P. Chen, Mat. Res. Soc. Symp. Proc. 82, 175 (1987).
[97] C.G. Lee, Y. Iijima, S. -E. Kim, Y.T. Lee, H. -M. Kim, The 15th Japan Symposium on Thermophysical Properties 263 (1994) and 395 (1995).
[98] J. Rüsing, Chr. Herzig Intermetallics 4, 647 (1996).
[99] W. Sprengel, H. Nakajima, N. Oikawa, Mater. Sci. Eng. 213, 45 (1996).
[100] J. Breuer, T. Wilger, M. Friesel, Chr. Herzig, Intermetallics 7, 381 (1999).
[101] H. Okamoto, J. Phase Equilibria 19, 598 (1998).
[102] E. M. Tanguep-Nijokep, M. Salamon, H. Mehrer, Growth of Intermetallic Phases in the Al-Mg System, Defect and Diffusion Forum 194 - 199, 1581 - 1586 (2001).
[103] H. Okamoto, J. Phase Equilibrian 29, 289 (2008).
[104] H. Chen, Y. Du, Comput. Coupling Phase Diagram and Thwermochem: 30, 308 (2006).
[105] M. Denkinger, H. Mehrer, Self-diffusion of 57Co and 95Nb in the cubic Laves phase Co2Nb, Defect and Diffusion Forum, 143 - 147, 371 (1997).
[106] M. Denkinger, H. Mehrer, Self-Diffusion of Both Components in the Intermetallic Laves-Phase NbCo2, Mat. Res. Soc. Symp. Proc. Vol. 552, 471 - 476 (1999).
[107] M. Denkinger, H. Mehrer, Diffusion in the C15-type intermetallic Laves phase Co2Nb, Phil. Mag. A 80, 1245 - 1263 (2000).
[108] H. Mehrer, W. Sprengel, Diffusion Reaction and Interdiffusion in some Binary Metallic Systems, Philos. Mag. 91, 1971-1986 (2012).
[109] R. Besson, S. Guyoz, A. Legris, Phys. Rev. B 75, 054105 (2007).
[110] R. Ravi, A. K. Kumar, A. Paul, Diffusion Studies in A3B Compounds with A15 Structure, Defect and Diffusion Forum 297-301, 477 (2010).
[111] I.V. Belova, G.E. Murch, J. Phys. Chem. Solids 58, 1383 (1997).
[112] H. Bakker, in: Diffusion in Solids: Recent Developments, M.A. Dayananda, G.E. Murch (Eds. ). The Metallurgical Society Publication, Warrendale, USA, p.62 (1985).
[113] A.K. Kumar, T. Laurila, V. Vuorinen, A. Paul, Scripta Mater. 60, 377 (1985).
[114] A.K. Kumar, A. Paul, Intermetallics 17, 962 (2009).
[115] I. Kaur, W. Gust, L. Kozma, Handbook of Grain and Interphase Boundary Diffusion Data, Ziegler Press, Stuttgart (1989).
[116] G. Martin, B. Peraillon, in: Grainboundary Structure and Kinetics, A.S.M., Metals Park, Ohio, 339 (1980).
[117] R.W. Balluffi, Met. Trans. A 13, 2069 (1982).
[118] N.L. Peterson, International Metals Reviews 28, 65 (1983).
[119] J. Bernardini, P. Gas, Defect and Diffusion Forum 95-98, 393 (1993).
[120] J. Bernardini, P. Gas, Grainboundary Diffusion in Solids: Recent Advances and Applications, Defect and Diffusion Forum 143-147, 1343 (1997).
[121] J. Sommer, Chr. Herzig, J. Appl. Phys. 72, 2758-2766 (1992).
[122] K. Maier, H. Mehrer, E. Lessmann, W. Schüle, Phys. Stat. Sol. (b) 78, 689 (1976).
[123] St. Frank, J. Rüsing, Chr. Herzig, Intermetallics 4, 601 (1996).
[124] J. -C. Ciccariello, S. Poize, P. Gas, J. Appl. Phys. 67, 3351 (1990).
[125] J. Gulpen, Thesis, Eindhoven University of Technology, (1995).
[126] R. Hahnel, W. Miekeley, H. Wever, Phys. Stat. Sol. (a) 97, 181 (1986).
[127] S.D. Gertsriken, T.K. Yatsenko, L.F. Slastnikova, Prob. Phys. Met. Metall. Akad. Nauk. SSSR 9, 154 (1959).
[128] V.B. Brik, L.N. Larikov, V.M. Fal'chenko, Ukrain. Fiz. Zhur. 20397 (1975).
[129] T. Barge, S. Poize, J. Bernardini, P. Gas, Appl. Surf. Sci, 63, 53, 180 (1991).
[130] T. Barge, Thesis, University Aix-Marseille III (1993).
[131] Chr. Herzig, T. Wilger, T. Przeorski, F. Hisker, S.V. Divinski, Intermetallics 9, 431 (2001).
[132] S.V. Divinski, F. Hisker, A. Bartels, Chr. Herzig, Scripta Mater. 45, 161 (2001).
[133] St. Frank, Chr. Herzig, Mater. Sci: Eng. 239-240, 882 (1997).
[134] J. Cermak, J. Ruzickova, I. Stloukal, A. Pokorna, Scripta Mater. 37, 31 (1997).
[135] Chr. Herzig, S.V. Divinski, St. Frank, T. Przeorski, Defect and Diffusion Forum 194-199, 389 (2001).
[136] Zs. Tökei, J Bernardini, D.J. Beke, Acta Mater. 47, 1371 (1999).
[137] Th. Heumann, H. Stüer, phys. Stat. Sol. 15, 95 (1966).
[138] Th. Heumann, H. Meiners, H. Stüer, Z. Naturf. 25a, 1883 (1970).
[139] P. Schmidt, Thesis, Technische Universität Berlin, (1965).
[140] R. Ebeling, H. Wever, Z. Metallkd. 59, 222 (1968).
[141] N. Prinz, H. Wever, Phys. Stat. Sol. (a) 61, 505 (1980).
[142] R. Günzel, P. Paufler, G.E.R. Schulze, in: Diffusion in metallischen Werkstoffen, H. Ringpfeil (Ed. ), Leipzig, VEB Verlag für Grundstoffindustrie, 183-189, (1970).
[143] A. Shinjaev, Diffusionje Processij v Splavakh, Moscow, Nauka, (1975).
[144] I.V. Belova, G.E. Murch, Philos. Mag. A 81, 1749 (2001).
[145] [ Zs. Tökei, J. Bernardini, D.L. Beke, Effect of Atomic Ordering on Iron and Cobalt Grainboundaty Diffusion in the FeCo equiatomic Compound, in: Diffusion Mechanisms in Crystalline Materials (Eds. Y. Mishin, G. Vogl, N. Cowern, R. Catlow, D. Farkas), MRS Warrendale, Pennsylvania 1998. P. 267.
DOI: 10.1557/proc-527-267
[146] Y . Iijima, C. Lee, Acta metal. Mater. 43, 1183 (1995).