Self-Diffusion, Solute-Diffusion and Interdiffusion in Binary Intermetallics

Article Preview

Abstract:

800x600 Intermetallics are compounds of two metals or of metal(s) and semimetal(s). Their structures are usually different from those of the constituents. Some intermetallics are interesting functional materials, others have attracted attention as high-temperature structural materials. We remind the reader of some fundamentals of solid-state diffusion and to the major techniques for tracer diffusion measurements, interdiffusion studies and the growth kinetics of layers in solid diffusion couples. Starting from self-diffusion, which is the most basic diffusion phenomenon in any solid, the paper covers the main features of diffusion in binary intermetallics from the systems Cu-Zn, Ni-Al, Fe-Al, Mg-Al, Ni-Ge, Ni-Ga, Fe-Si, Ti-Al, Ni-Mn, Mo-Si, Co-Nb and Ni-Nb.. We illustrate the influence of phase transitions on diffusion and point out some common features of diffusion in intermetallics. We discuss in detail diffusion in silicides of iron, molybdenum and of silicides of refractory metals. We also consider aluminides of iron, nickel, and titanium and in the aluminium-magnesium system. We consider diffusion in intermetallics of the cobalt-niobium and nickel-niobium system and in in the Nb-Sn and V-Ga systems. We finish with some remarks about grain boundary diffusion in intermetallics. Normal 0 21 false false false UK X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-72

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Westbrook, R. L. Fleischer (Eds. ), Intermetallic Compounds, Vol. 1 Principles, Vol. 2 Practise, J. Wiley and Sons Ltd., (1995).

Google Scholar

[2] G. Sauthoff, Intermetallics, VCH Weinheim, (1995).

Google Scholar

[3] J. Philibert, Atom Movements - Diffusion and Mass Transport in Solids, Les Editions de Physique, Les Ulis, (1991).

Google Scholar

[4] Th. Heumann, Diffusion in Metallen, Springer-Verlag, Berlin, (1992).

Google Scholar

[5] H. Mehrer, Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-controlled Processes, Springer Series in Solid State Sciences 155, 2007. Paperback edition 2011. Japanese translation (2012).

Google Scholar

[6] H. Mehrer (Vol. Ed. ), Diffusion in Solid Metals and Alloys, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series Vol. III/26, Springer Verlag, (1990).

DOI: 10.1002/bbpc.19930970725

Google Scholar

[7] H. Bakker, Self-diffusion in Binary Alloys and Intermetallic Phases, in: Diffusion in Solid Metals and Alloys, Chapt. 4 in.

Google Scholar

[8] H. Bakker, Tracer Diffusion in Concentrated Alloys, in: Diffusion in Crystalline Solids, G.E. Murch, A. S Nowick (Eds. ), Academic Press, Orlando, 1984, p.189.

DOI: 10.1016/b978-0-12-522662-2.50009-1

Google Scholar

[9] H. Wever, Defect and Diffusion Forum 83, 55 (1992).

Google Scholar

[10] H. Mehrer, Diffusion in Intermetallics, Materials Transactions, JIM, 37, 1259 – 1280 (1996).

DOI: 10.2320/matertrans1989.37.1259

Google Scholar

[11] M. Koiwa, H. Numakura, S. Ishioka, Diffusion in L12 Type Intermetallics, Defect and Diffusion Forum 143 - 147, 209 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.209

Google Scholar

[121] H. Mehrer, F. Wenwer, Diffusion in Metals, in: Diffusion in Condensed Matter, J. Kärger, P. Heitjans, R. Haberlandt (Eds. ), Verlag Vieweg, Braunschweig, 1998, p.1.

Google Scholar

[13] H. Nakajima, W. Sprengel, K. Nonaka, Intermetallics 4, 517 (1996).

Google Scholar

[14] H. Mehrer, Chr. Herzig, Diffusion in Intermetallic Compounds – Recent Progress, in: Advances in Science and Technology, Mass and Charge Transport in Inorganic Materials: Fundamentals to Devices, P. Vicenzini, V. Buscaglia (Eds. ), Techna Srl. 2000, p.187.

Google Scholar

[15] Chr. Herzig, S.V. Divinski, St. Frank, T. Przeorski, Defect and Diffusion Forum 194 - 199, 317 (2001).

DOI: 10.4028/www.scientific.net/ddf.194-199.317

Google Scholar

[16] Chr, Herzig, S.V. Divinski, Bulk and Grainboundary Diffusion in Intermetallic Compounds, in: Diffusion Processes in: Advaanced Technological Materials, D. Gupta (Ed. ), William Andrew Publishing, Norwich, New York, Springer (2000).

DOI: 10.1016/b978-081551501-2.50006-x

Google Scholar

[17] H. Mehrer, Diffusion: Introduction and Case Studies in Metals and Binary Alloys, in: Diffusion in Condensed Matter - Methods, Materials, Models, P. Heitjans, J. Kärger (Eds. ), Springer-Verlag, 2005, p.3.

DOI: 10.1007/3-540-30970-5_1

Google Scholar

[18] H. Mehrer, S. Divinski, Diffusion in Metallic Elements and Intermetallics, Defect and Diffusion Forum 289 – 291, 15 (2009).

DOI: 10.4028/www.scientific.net/ddf.289-292.15

Google Scholar

[19] A. Gude, H. Mehrer, Diffusion in the DO3 type Intermetallic Phase Fe3Si, Phil. Mag. A 76, 1 - 29 (1997).

Google Scholar

[20] M. Eggersmann, B. Sepiol, G. Vogl, H. Mehrer Diffusion in the Intermetallic Phases of the Fe-Al system studied by Tracer and Mößbauer Techniques, Defect and Diffusion Forum, 143 - 147, 339 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.339

Google Scholar

[21] F. Sauer and V. Freise, Z. Elektrochemie 66, 353 (1966).

Google Scholar

[22] F.J.A. denBroeder, Scr. Metall. 3, 321 (1969).

Google Scholar

[23] Th. Heumann, Z. Phys. Chem. 201, 168 (1952).

Google Scholar

[24] G.V. Kidson, Some Aspects of the Growth of Diffusion Layers in Binary Systems, J. Nuclear Materials 3, 21 (1961).

DOI: 10.1016/0022-3115(61)90175-1

Google Scholar

[25] W. Sprengel, M. Denkinger, H. Mehrer, Multiphase Diffusion in the Cobalt-Niobium and Nickel-Niobium Systems: Part I: Solid-solid Phase Equilibria and Growth of Intermetallic Phases, Intermetallics 2, 127 - 135 (1994).

DOI: 10.1016/0966-9795(94)90007-8

Google Scholar

[26] W. Sprengel, M. Denkinger, H. Mehrer, Multiphase Diffusion in the Cobalt-Niobium and Nickel-Niobium Systems: Part II: Interdiffusion, Intermetallics 2, 137 - 146 (1994).

DOI: 10.1016/0966-9795(94)90008-6

Google Scholar

[27] C. Wagner, Acta Metallurgica 17, 99 (1969).

Google Scholar

[28] S. Prasad, A. Paul, Growth Mechanism of Phases by Interduffusion and Atomic Mechanism of Diffusion in the Molybdenum-Silicon System, Intermetallics 19, 1191 (2011).

DOI: 10.1016/j.intermet.2011.03.027

Google Scholar

[29] S. Roy, S.V. Divinski, A. Paul, Reactive Diffusion in the Ti-Si System and the Significance of the Parabolic Growth Constant, Phil. Mag., in press.

Google Scholar

[30] S. Roy, S. Prasad, S.V. Divinski, A. Paul, Diffusion Pattern in MSi2 and M5Si4 Silicides in Group VB (M= V, Nb, Ta) and VIB (M= Mo, W) Refractory Metal –Silicon –Systems, in press.

DOI: 10.1080/14786435.2014.888103

Google Scholar

[31] J. Sommer, Chr. Herzig, J. Appl. Phys. 72, 2758 – 2766 (1992).

Google Scholar

[32] M. Arioka, M. Koiwa, S. Ishioka, Acta. Metall. 37, 269 (1989).

Google Scholar

[33] I.V. Belova, G. E. Murch, Philos. Mag. A82, 269 (2002).

Google Scholar

[34] N.A. Stolwijk, M. van Gend, H. Bakker, Philos. Mag. A42, 283 (1980).

Google Scholar

[35] H. Bakker, N. A: Stolwijk, M.A. Hoetjes-Eijkel, Philos. Mag. A43, 251 (1981).

Google Scholar

[36] C.R. Kao, Y.A. Chang, Intermetallics 1, 237 (1993).

Google Scholar

[37] S.V. Divinski, L.N. Larikov, J. Phys. Condensed Matter 35, 7377 (1997).

Google Scholar

[38] I.V. Belova, G.E. Murch, Intermetallics 6, 115 (1998).

Google Scholar

[39] K. Nonaka, T. Arayashiki, H. Nakajima, A. Almazouzi, T. Ikeda, K. Tanaka, H. Numakura, M. Koiwa, Self-diffusion in L12-type Intermetallic Compounds Ni3Ge and Ni3Ga, Defect and Diffusion Forum 143 - 147, 209 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.269

Google Scholar

[40] M. Koiwa, S. Ishioka, Philos. Mag. A 48, 1 (1983).

Google Scholar

[41] M. Koiwa, H. Numakura, S. Ishioka, Diffusion in L12-type Intermetallics, Defect and Diffusion Forum 143 - 147, 209 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.209

Google Scholar

[42] F. M. d'Heurle, P. Gas, J. Philibert, Solid State Phenomena 41, 93 (1995).

Google Scholar

[43] F. M. d'Heurle, P. Gas, C. Lavoie, J. Philibert, Z. Metallkd. 95, 852 (2004).

Google Scholar

[44] A.B. Kuper, D. Lazarus, J.R. Manning, C.T. Tomizuka, Phys. Rev. 104, 1536 (1956).

Google Scholar

[45] S. Peteline, H. Mehrer, M. -L. Huang, Y. A. Chang, Self-Diffusion in Nickel-Manganese Alloys, Defect and Diffusion Forum 237 240, 352 (2005).

DOI: 10.4028/www.scientific.net/ddf.237-240.352

Google Scholar

[46] T.B. Massalski, Binary Alloy Phase Diagrams, Metals Park, Ohio, ASM, (1986).

Google Scholar

[47] A. Gude, B. Sepiol, G. Vogl, H. Mehrer, A Study of Diffusion in the Intermetallic Phase Fe3Si by Tracer and Mößbauer Techniques, Defect and Diffusion Forum 143-147, 351-(1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.351

Google Scholar

[48] A. Gude, K. Freitag, B. Sepiol, G. Vogl, H. Mehrer, Diffusion in the Intermetallic Phase Fe3Si under Hydrostatic Pressure, phys. stat. sol. (b) 197, 299 -307 (1996).

DOI: 10.1002/pssb.2221970204

Google Scholar

[49] E.A. Kümmerle, K. Badura, B. Sepiol, H. Mehrer, H. -E. Schaefer, Thermal Formation of Vacancies in Fe3Si, Phys. Rev. B 52, R6947 (1995).

DOI: 10.1103/physrevb.52.r6947

Google Scholar

[50] H. Mehrer, The Effect of Pressure on Diffusion, Defect and Diffusion Forum 129 - 130, 57 - 74 (1996).

DOI: 10.4028/www.scientific.net/ddf.129-130.57

Google Scholar

[51] M. Salamon, H. Mehrer, Diffusion in the B20-type phase FeSi, Philos. Mag. A 79, 2137 - 2155 (1999).

DOI: 10.1080/01418619908210413

Google Scholar

[52] I. Rihimäki, A. Virtanen, P. Pusa, M. Salamon, H. Mehrer, J. Räisänen, Si Self-diffusion in cubic B20 structured FeSi, Europhys. Letters 82, 66005 (2008).

DOI: 10.1209/0295-5075/82/66005

Google Scholar

[53] M. Salamon, K. Ito, M. Yamaguchi, K. Freitag, H. Mehrer, Diffusion of 71Ge in Molybdenum Disilicide, Defect and Diffusion Forum 194 - 199, 523 - 529 (2001).

DOI: 10.4028/www.scientific.net/ddf.194-199.523

Google Scholar

[54] M. Salamon, H. Mehrer, Diffusion of  71Ge and 99Mo in Molybdenum Disilicide, Defect and Diffusion Forum, 216 – 217, 161 – 168 (2003).

DOI: 10.4028/www.scientific.net/ddf.216-217.161

Google Scholar

[55] M. Salamon, A. Strohm, T. Voss, P. Laitinen, I. Rihimäki, S.V. Divinski, W. Frank, J. Räisänen, H. Mehrer, Self-Diffusion of Silicon in Molybdenum Disilicide, Philos. Mag., 84, 737-756 (2004).

DOI: 10.1080/14786430310001641966

Google Scholar

[56] M. Salamon, H. Mehrer, Diffusion in Molybdenum Disilicide, Z. Metallkd., 8, 833 (2005).

Google Scholar

[57] X.Y. Zhang, W. Sprengel, T. EM. Staab, H. Inui, H. -E. Schaefer, Phys. Rev. Lett. 92, 155502-1 (2004).

Google Scholar

[58] S.V. Divinski, M. Salamon, H. Mehrer, Silicon Diffusion in Molybdenum Disilicide: Correlation Effects, Philos. Mag., 84, 757 – 772 (2004).

DOI: 10.1080/14786430310001646781

Google Scholar

[59] I.V. Belova, G.E. Murch, H. Mehrer, Diffusion Correlation in Molybdenum Disilicide, Philos. Mag. 91, 3727 – 3743 (2011).

DOI: 10.1080/14786435.2011.590460

Google Scholar

[60] P. Gas, G. Scilla, A. Michel, F.K. Legouses, O. Thomas, F.M. d'Heurle, J. Appl. Phys. 63, 5335 (1988).

Google Scholar

[61] J.K. Yoon, J.K. Lee, K.H. Lee, J.Y. Byun, G.H. Kim, K.T. Hong, Intermetallics 11, 687 (2003).

Google Scholar

[62] P.C. Tortorici, M.A. Dayananda, Metall. Mater. Trans. A 30, 545 (1999).

Google Scholar

[63] Yu. Mishin, Chr. Herzig, Acta Mater. 48, 589 (2000).

Google Scholar

[64] O. Kubaschewski, Iron-Binary Phase Diagrams, Berlin, Springer-Verlag, (1982).

Google Scholar

[65] W. Köster, T. Gödecke, Z. Metallkd. 71, 785 (1980).

Google Scholar

[66] M. Eggersmann, H. Mehrer, Diffusion in Intermetallic Phases of the Fe-Al System, Philos. Mag. A 80, 1219 - 1244 (2000).

DOI: 10.1080/01418610008212112

Google Scholar

[67] Zs. Tökei, J. Bernardini, P. Gas, D. L. Beke, Acta Mater. 45, 541 (1997).

Google Scholar

[68] R. Kerl, J. Wolff, Th. Hehenkamp, Intermetallics 7, 301-308 (1999).

Google Scholar

[69] } H. -E. Schaefer, R. Würschum, M. Sob, W. Zak, W.Z. Yu, W. Eckert, F. Banhart, Phys. Rev. B 41, 11869 (1990).

Google Scholar

[70] G. Vogl, B. Sepiol, Acta metall. Mater. 42, 3175 (1994).

Google Scholar

[71] R. Feldwisch, B. Sepiol, G. Vogl, Acta metall. Mater. 43, 2033 (1995).

Google Scholar

[72] M. Salamon, D. Fuks, H. Mehrer Interdiffusion and Al Self-diffusion in Iron-Aluminides, Defect and Diffusion Forum, 237 - 240, 444 - 449 (2005).

DOI: 10.4028/www.scientific.net/ddf.237-240.444

Google Scholar

[73] M. Salamon, H. Mehrer, Interdiffusion, Kirkendall Effect and Al Self-diffusion in Fe-Al Alloys, Z. Metallkd., 96, 1 (2005).

DOI: 10.3139/146.018071

Google Scholar

[74] V. Liubich, S. Dorfman, D. Fuks, H. Mehrer, Thermodynamic Factor in Interdiffusion in Fe-Al Aloys from the diffuse X-ray Scattering, Mat. Sci. Eng. A 256, 65 - 68 (1998).

DOI: 10.1016/s0921-5093(98)00918-6

Google Scholar

[75] S. Peteline, E. M. Tanguep Nijokep, S. Divinski, H. Mehrer, Diffusion of Solute Elements in Fe3Al, Defect and Diffusion Forum, 216 – 217, 175 – 180 (2003).

DOI: 10.4028/www.scientific.net/ddf.216-217.175

Google Scholar

[76] H. Okamoto, J. Phase Equilibria 14, 257 (1993).

Google Scholar

[77] M.B. Bronfin, G.S. Bulatov, I.A. Drugova, Fiz. Metal. Metalloved. 40, 363 (1975).

Google Scholar

[78] K. Hoshino, S.J. Rothman, R.S. Averbach, Acta Metall. 36, 1271 (1988).

Google Scholar

[79] Y. Shi, G. Frohberg, H. Wever, Phys. Status Solidi A 191, 361 (1995).

Google Scholar

[80] St. Frank, U. Södervall, Chr. Herzig, Phys. Status Solidi B 191, 45 (1995).

Google Scholar

[81] T. Ikeda, A. Almazouzi, H. Numakura, M. Koiwa, W. Sprengel, H. Nakajima, Acta Mater. 46, 5369 (1998).

DOI: 10.1016/s1359-6454(98)00209-2

Google Scholar

[82] M. Watanabe, Z. Horita, M. Nemoto, Measurements of Interdiffusion Coefficients in Ni-Al System, Defect and Diffusion Forum 143-147, 345 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.345

Google Scholar

[83] K. Fujiwara, Z. Horita, Acta Mater. 50, 1571 (2002).

Google Scholar

[84] S.V. Divinski, St. Frank, U. Södervall, Chr. Herzig, Acta Mater. 46, 4369 (1998).

Google Scholar

[85] Y. Minamino, H. Yoshida, S. B . Jung, K. Hirano, T. Yamane, Diffusion of Pt and Mo in Ni and Ni3Al, Defect and Diffusion Forum 143-147, 257 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.257

Google Scholar

[86] St. Frank, U. Södervall, Chr. Herzig, Self- and Impurity Diffusion of Ni, Ga, Ge, Ti, Nb and B in the L12-type Intermetallic Compound Ni3Al, Defect and Diffusion Forum 143-147, 245 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.245

Google Scholar

[87] S.B. Jung, Y. Minamino, H. Araki, T. Yamane, K. Hirano, S. Saji, Defect and Diffusion Forum 95-98, 859 (1993).

DOI: 10.4028/www.scientific.net/ddf.95-98.859

Google Scholar

[88] G.F. Hancock, B.R. McDonnell, Phys. Status Solidi a4, 143 (1971).

Google Scholar

[89] St. Frank, S.V. Divinski, U. Södervall, Chr. Herzig, Acta Mater: 49, 12399 (2001).

Google Scholar

[90] Y. Minamino, Y. Koizumi, N. Tsuji, M. Morioka, K. Hirano, Y. Shirai, Science and Technology of Advanced Materials 1, 237 (2002).

Google Scholar

[91] Chr. Herzig, T. Przeorski, Y. Mishin, Intermetallics 7, 389 (1999).

Google Scholar

[92] T. Ikeda, H. Kadowaki, H. Nakajima, Acta Mater. 49, 3475 (2001).

Google Scholar

[93] W. Sprengel, N. Oikawa, H. Nakajima, Intermetallics 4, 185 (1996).

Google Scholar

[94] Chr. Herzig, M. Friesel, D. Derdau, S.V. Divinski, Intermetallics 7, 1141 (1991).

Google Scholar

[95] Chr. Herzig, T. Prezeorski, M. Friesel, F. Hisker, S.V. Divinski, Intermetallics 9, 461 (2001).

Google Scholar

[96] A.F. Voter, S.P. Chen, Mat. Res. Soc. Symp. Proc. 82, 175 (1987).

Google Scholar

[97] C.G. Lee, Y. Iijima, S. -E. Kim, Y.T. Lee, H. -M. Kim, The 15th Japan Symposium on Thermophysical Properties 263 (1994) and 395 (1995).

Google Scholar

[98] J. Rüsing, Chr. Herzig Intermetallics 4, 647 (1996).

Google Scholar

[99] W. Sprengel, H. Nakajima, N. Oikawa, Mater. Sci. Eng. 213, 45 (1996).

Google Scholar

[100] J. Breuer, T. Wilger, M. Friesel, Chr. Herzig, Intermetallics 7, 381 (1999).

Google Scholar

[101] H. Okamoto, J. Phase Equilibria 19, 598 (1998).

Google Scholar

[102] E. M. Tanguep-Nijokep, M. Salamon, H. Mehrer, Growth of Intermetallic Phases in the Al-Mg System, Defect and Diffusion Forum 194 - 199, 1581 - 1586 (2001).

DOI: 10.4028/www.scientific.net/ddf.194-199.1581

Google Scholar

[103] H. Okamoto, J. Phase Equilibrian 29, 289 (2008).

Google Scholar

[104] H. Chen, Y. Du, Comput. Coupling Phase Diagram and Thwermochem: 30, 308 (2006).

Google Scholar

[105] M. Denkinger, H. Mehrer, Self-diffusion of 57Co and 95Nb in the cubic Laves phase Co2Nb, Defect and Diffusion Forum, 143 - 147, 371 (1997).

Google Scholar

[106] M. Denkinger, H. Mehrer, Self-Diffusion of Both Components in the Intermetallic Laves-Phase NbCo2, Mat. Res. Soc. Symp. Proc. Vol. 552, 471 - 476 (1999).

DOI: 10.1557/proc-552-kk7.6.1

Google Scholar

[107] M. Denkinger, H. Mehrer, Diffusion in the C15-type intermetallic Laves phase Co2Nb, Phil. Mag. A 80, 1245 - 1263 (2000).

DOI: 10.1080/01418610008212113

Google Scholar

[108] H. Mehrer, W. Sprengel, Diffusion Reaction and Interdiffusion in some Binary Metallic Systems, Philos. Mag. 91, 1971-1986 (2012).

DOI: 10.1080/14786435.2012.734637

Google Scholar

[109] R. Besson, S. Guyoz, A. Legris, Phys. Rev. B 75, 054105 (2007).

Google Scholar

[110] R. Ravi, A. K. Kumar, A. Paul, Diffusion Studies in A3B Compounds with A15 Structure, Defect and Diffusion Forum 297-301, 477 (2010).

DOI: 10.4028/www.scientific.net/ddf.297-301.477

Google Scholar

[111] I.V. Belova, G.E. Murch, J. Phys. Chem. Solids 58, 1383 (1997).

Google Scholar

[112] H. Bakker, in: Diffusion in Solids: Recent Developments, M.A. Dayananda, G.E. Murch (Eds. ). The Metallurgical Society Publication, Warrendale, USA, p.62 (1985).

Google Scholar

[113] A.K. Kumar, T. Laurila, V. Vuorinen, A. Paul, Scripta Mater. 60, 377 (1985).

Google Scholar

[114] A.K. Kumar, A. Paul, Intermetallics 17, 962 (2009).

Google Scholar

[115] I. Kaur, W. Gust, L. Kozma, Handbook of Grain and Interphase Boundary Diffusion Data, Ziegler Press, Stuttgart (1989).

Google Scholar

[116] G. Martin, B. Peraillon, in: Grainboundary Structure and Kinetics, A.S.M., Metals Park, Ohio, 339 (1980).

Google Scholar

[117] R.W. Balluffi, Met. Trans. A 13, 2069 (1982).

Google Scholar

[118] N.L. Peterson, International Metals Reviews 28, 65 (1983).

Google Scholar

[119] J. Bernardini, P. Gas, Defect and Diffusion Forum 95-98, 393 (1993).

Google Scholar

[120] J. Bernardini, P. Gas, Grainboundary Diffusion in Solids: Recent Advances and Applications, Defect and Diffusion Forum 143-147, 1343 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.1343

Google Scholar

[121] J. Sommer, Chr. Herzig, J. Appl. Phys. 72, 2758-2766 (1992).

Google Scholar

[122] K. Maier, H. Mehrer, E. Lessmann, W. Schüle, Phys. Stat. Sol. (b) 78, 689 (1976).

DOI: 10.1002/pssb.2220780230

Google Scholar

[123] St. Frank, J. Rüsing, Chr. Herzig, Intermetallics 4, 601 (1996).

Google Scholar

[124] J. -C. Ciccariello, S. Poize, P. Gas, J. Appl. Phys. 67, 3351 (1990).

Google Scholar

[125] J. Gulpen, Thesis, Eindhoven University of Technology, (1995).

Google Scholar

[126] R. Hahnel, W. Miekeley, H. Wever, Phys. Stat. Sol. (a) 97, 181 (1986).

Google Scholar

[127] S.D. Gertsriken, T.K. Yatsenko, L.F. Slastnikova, Prob. Phys. Met. Metall. Akad. Nauk. SSSR 9, 154 (1959).

Google Scholar

[128] V.B. Brik, L.N. Larikov, V.M. Fal'chenko, Ukrain. Fiz. Zhur. 20397 (1975).

Google Scholar

[129] T. Barge, S. Poize, J. Bernardini, P. Gas, Appl. Surf. Sci, 63, 53, 180 (1991).

Google Scholar

[130] T. Barge, Thesis, University Aix-Marseille III (1993).

Google Scholar

[131] Chr. Herzig, T. Wilger, T. Przeorski, F. Hisker, S.V. Divinski, Intermetallics 9, 431 (2001).

DOI: 10.1016/s0966-9795(01)00022-x

Google Scholar

[132] S.V. Divinski, F. Hisker, A. Bartels, Chr. Herzig, Scripta Mater. 45, 161 (2001).

Google Scholar

[133] St. Frank, Chr. Herzig, Mater. Sci: Eng. 239-240, 882 (1997).

Google Scholar

[134] J. Cermak, J. Ruzickova, I. Stloukal, A. Pokorna, Scripta Mater. 37, 31 (1997).

Google Scholar

[135] Chr. Herzig, S.V. Divinski, St. Frank, T. Przeorski, Defect and Diffusion Forum 194-199, 389 (2001).

DOI: 10.4028/www.scientific.net/ddf.194-199.317

Google Scholar

[136] Zs. Tökei, J Bernardini, D.J. Beke, Acta Mater. 47, 1371 (1999).

Google Scholar

[137] Th. Heumann, H. Stüer, phys. Stat. Sol. 15, 95 (1966).

Google Scholar

[138] Th. Heumann, H. Meiners, H. Stüer, Z. Naturf. 25a, 1883 (1970).

Google Scholar

[139] P. Schmidt, Thesis, Technische Universität Berlin, (1965).

Google Scholar

[140] R. Ebeling, H. Wever, Z. Metallkd. 59, 222 (1968).

Google Scholar

[141] N. Prinz, H. Wever, Phys. Stat. Sol. (a) 61, 505 (1980).

Google Scholar

[142] R. Günzel, P. Paufler, G.E.R. Schulze, in: Diffusion in metallischen Werkstoffen, H. Ringpfeil (Ed. ), Leipzig, VEB Verlag für Grundstoffindustrie, 183-189, (1970).

Google Scholar

[143] A. Shinjaev, Diffusionje Processij v Splavakh, Moscow, Nauka, (1975).

Google Scholar

[144] I.V. Belova, G.E. Murch, Philos. Mag. A 81, 1749 (2001).

Google Scholar

[145] [ Zs. Tökei, J. Bernardini, D.L. Beke, Effect of Atomic Ordering on Iron and Cobalt Grainboundaty Diffusion in the FeCo equiatomic Compound, in: Diffusion Mechanisms in Crystalline Materials (Eds. Y. Mishin, G. Vogl, N. Cowern, R. Catlow, D. Farkas), MRS Warrendale, Pennsylvania 1998. P. 267.

DOI: 10.1557/proc-527-267

Google Scholar

[146] Y . Iijima, C. Lee, Acta metal. Mater. 43, 1183 (1995).

Google Scholar