Atomic Migration Studies with X-Ray Photon Correlation Spectroscopy

Article Preview

Abstract:

The new technique of atomic-scale X-ray Photon Correlation Spectroscopy (aXPCS) makesuse of a coherent X-ray beam to study the dynamics of various processes in condensed matter systems.Particularly atomistic migration mechanisms are still far from being understood in most of intermetallicalloys and in amorphous systems. Special emphasis must be given to the opportunity to measureatomistic diffusion at relatively low temperatures where such measurements were far out of reach withpreviously established methods. The importance of short-range order is demonstrated on the basis ofMonte Carlo simulations.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] L van Hove. Correlations in space and time and Born approximation scattering in systems of interacting particles. Physical Review, 95(1): 249, (1954).

DOI: 10.1103/physrev.95.249

Google Scholar

[2] R Hempelmann. Quasielastic neutron scattering and solid state diffusion. Oxford University Press, Oxford, (2000).

Google Scholar

[3] J V Michalowicz, J M Nichols, F Bucholtz, and C C Olson. An Isserlis theorem for mixed Gaussian variables: application to the auto-bispectral density. Journal of Statistical Physics, 136(1): 89-102, (2009).

DOI: 10.1007/s10955-009-9768-3

Google Scholar

[4] P A Lemieux and D J Durian. Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions. J. Opt. Soc. Am., 16(7): 1651-1664, (1999).

DOI: 10.1364/josaa.16.001651

Google Scholar

[5] A S Gittings and D J Durian. Gaussian and non-Gaussian speckle fluctuations in the diffusingwave spectroscopy signal of a coarsening foam. Appl. Opt., 45(10): 2199-2204, Apr (2006).

DOI: 10.1364/ao.45.002199

Google Scholar

[6] R Pecora. Dynamic Light Scattering: AQpplications of Photon Correlation Spectroscopy. Springer, (1985).

Google Scholar

[7] L Cipelletti and E C Weeks. Glassy dynamics and dynamical heterogeneity in colloids. In L. Berthier, G. Biroli, J. -P. Bouchaud, L. Cipelletti, and W. van Saarlos, editors, Dynamical Heterogeneities in Glasses, Colloids and Granular Media, pages 110-151. Oxford University Press, (2011).

DOI: 10.1093/acprof:oso/9780199691470.003.0004

Google Scholar

[8] J W Haus and K W Kehr. Diffusion in regular and disordered lattices. Physics Reports-Review Section of Physics Letters, 150(5-6): 263-406, JUN (1987).

DOI: 10.1016/0370-1573(87)90005-6

Google Scholar

[9] M Sutton. X-ray intensity fluctuation spectroscopy. In F Hippert, E Geissler, J-L Hodeau, E Lelievre-Berna, and J-R Regnard, editors, Neutron and X-ray Spectroscopy, pages 297-318. Springer Netherlands, (2006).

DOI: 10.1007/1-4020-3337-0

Google Scholar

[10] G Vogl and B Sepiol. The elementary diffusion step in metals studied by the interefrence of gamma-rays, X-rays and neutrons. In P. Heitjans and J. Kärger, editors, Diffusion in Condensed Matter, pages 65-91. Springer, (2005).

DOI: 10.1007/3-540-30970-5_2

Google Scholar

[11] P G De Gennes. Liquid dynamics and inelastic scattering of neutrons. Physica, 25(7-12): 825- 839, (1959).

DOI: 10.1016/0031-8914(59)90006-0

Google Scholar

[12] S K Sinha and D K Ross. Self-consistent density response function method for dynamics of light interstitials in crystals. Physica B+C, 149(1-3): 51 - 56, (1988).

DOI: 10.1016/0378-4363(88)90218-5

Google Scholar

[13] M Leitner and G Vogl. Quasi-elastic scattering under short-range order: the linear regime and beyond. J. Phys. -Condens. Mat., 23: 254206, (2011).

DOI: 10.1088/0953-8984/23/25/254206

Google Scholar

[14] M Leitner, B Sepiol, L-M Stadler, B Pfau, and G Vogl. Atomic diffusion studied with coherent X-rays. Nature Materials, 8(9): 717-720, (2009).

DOI: 10.1038/nmat2506

Google Scholar

[15] M Stana, M Leitner, M Ross, and M Sepiol. Studies of atomic diffusion in Ni-Pt solid solution by X-ray photon correlation spectroscopy. Journal of Physics: Condensed Matter, 25(6): 065401, (2013).

DOI: 10.1088/0953-8984/25/6/065401

Google Scholar

[16] M Ross, M Stana, M Leitner, and B Sepiol. Direct observation of atomic network migration in glass. New J. Phys. in press.

DOI: 10.1088/1367-2630/16/9/093042

Google Scholar

[17] C T Chudley and R J Elliott. Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc., 77: 353, (1961).

DOI: 10.1088/0370-1328/77/2/319

Google Scholar

[18] G Sauthoff. Intermetallics. Wiley-VCH Verlag GmbH, (2007).

Google Scholar

[19] R Kutner and I Sosnowska. Thermal neutron scattering from a hydrogen-metal system in terms of a general multi-sublattice jump diffusion model I: Theory. Journal of Physics and Chemistry of Solids, 38(7): 741 - 746, (1977).

DOI: 10.1016/0022-3697(77)90067-1

Google Scholar

[20] J M Rowe, K Skoeld, H E Flotow, and J J Rush. Quasielastic neutron scattering by hydrogen in the alpha and beta phases of vanadium hydride. Journal of Physics and Chemistry of Solids, 32(1): 41 - 54, (1971).

DOI: 10.1016/s0022-3697(71)80006-9

Google Scholar

[21] I S Anderson, A Heidemann, J E Bonnet, D K Ross, S K P Wilson, and M W McKergow. Proton residence times in the solid solution phase of the Y-H system studied by quasi-elastic neutron scattering. Journal of the Less Common Metals, 101: 405-418, (1984).

DOI: 10.1016/0022-5088(84)90116-4

Google Scholar

[22] O G Randl, B Sepiol, G Vogl, R Feldwisch, and K Schroeder. Quasielastic Mössbauer spectroscopy and quasielastic neutron scattering from non-Bravais lattices with differently occupied sublattices. Phys. Rev. B, 49: 8768-8773, (1994).

DOI: 10.1103/physrevb.49.8768

Google Scholar

[23] B Sepiol and K F Ludwig. High-resolution experimental methods. In W Pfeiler, editor, Alloy Physics: A Comprehensive Reference, pages 707-773. Wiley-VCH, (2007).

Google Scholar

[24] B Sepiol and G Vogl. Atomistic determination of diffusion mechanism on an ordered lattice. Phys. Rev. Lett., 71(5): 731-734, Aug (1993).

DOI: 10.1103/physrevlett.71.731

Google Scholar

[25] R Feldwisch, B Sepiol, and G Vogl. Elementary diffusion jump of iron atoms in intermetallic phases studied by Mössbauer spectroscopy - II. from order to disorder. Acta metall. mater., 43(5): 2033-2039, (1995).

DOI: 10.1016/0956-7151(94)00382-r

Google Scholar

[26] B Sepiol, A Meyer, G Vogl, R Ruffer, A I Chumakov, and A Q R Baron. Time domain study of Fe-57 diffusion using nuclear forward scattering of synchrotron radiation. Phys. Rev. Lett., 76(17): 3220-3223, APR 22 (1996).

DOI: 10.1103/physrevlett.76.3220

Google Scholar

[27] M Kaisermayr, J Combet, H Ipser, H Schicketanz, B Sepiol, and G Vogl. Nickel diffusion in B2-NiGa studied with quasielastic neutron scattering. Phys. Rev. B, 61(18): 12038-12044, (2000).

DOI: 10.1103/physrevb.61.12038

Google Scholar

[28] M Kaisermayr, J Combet, H Ipser, H Schicketanz, B Sepiol, and G Vogl. Determination of the elementary jump of Co in CoGa by quasielastic neutron scattering. Phys. Rev. B, 63: 054303, Jan (2001).

DOI: 10.1103/physrevb.63.054303

Google Scholar

[29] M Kaisermayr, C Pappas, B Sepiol, and G Vogl. Probing jump diffusion in crystalline solids with neutron spin-echo spectroscopy. Phys. Rev. Lett., 87(17), (2001).

DOI: 10.1103/physrevlett.87.175901

Google Scholar

[30] M Kaisermayr, M Rennhofer, G Vogl, C Pappas, and S Longeville. Neutron spin-echo spectroscopy for diffusion in crystalline solids. Phys. Rev. B, 66: 024302, Jun (2002).

DOI: 10.1103/physrevb.66.024302

Google Scholar

[31] T Salditt, S Kalbfleisch, M Osterhoff, S P Krüger, M Bartels, K Giewekemeyer, H Neubauer, and M Sprung. Partially coherent nano-focused x-ray radiation characterized by Talbot interferometry. Optics Express, 19(10): 9656-9675, (2011).

DOI: 10.1364/oe.19.009656

Google Scholar

[32] M Leitner. Studying Atomic Dynamics with Coherent X-rays. Springer, (2012).

Google Scholar

[33] F Livet, F Bley, J Mainville, R Caudron, S G J Mochrie, E Geissler, G Dolino, D Abernathy, G Grübel, and M Sutton. Using direct illumination CCDs as high-resolution area detectors for X-ray scattering. Nucl. Instrum. Meth. A, 451(3): 596-609, (2000).

DOI: 10.1016/s0168-9002(00)00333-8

Google Scholar

[34] D Lumma, L B Lurio, S G J Mochrie, and M Sutton. Area detector based photon correlation in the regime of short data batches: Data reduction for dynamic X-ray scattering. Review of Scientific Instruments, 71(9): 3274-3289, (2000).

DOI: 10.1063/1.1287637

Google Scholar

[35] R Dinapoli, A Bergamaschi, D Greiffenberg, B Henrich, R Horisberger, I Johnson, A Mozzanica, V Radicci, B Schmitt, X Shi, et al. EIGER characterization results. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, (2013).

DOI: 10.1016/j.nima.2013.04.047

Google Scholar

[36] J Philibert. Atom Movements Diffusion and Mass Transport in Solids, translated from the French by Steven J Rothman. Les Editions de Physique, Paris, France, (1991).

Google Scholar

[37] H Mehrer. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer Verlag, (2007).

Google Scholar

[38] D Wolf. Theory of Mössbauer line broadening due to correlated diffusion in crystals. Appl. Phys. Lett., 30(12): 617-619, (1977).

DOI: 10.1063/1.89281

Google Scholar

[39] F Haider, R Kozubski, and T A Abinandanan. Simulation Techniques. In W Pfeiler, editor, Alloy Physics: A Comprehensive Reference, pages 653-706. Wiley-VCH, (2007).

DOI: 10.1002/9783527614196.ch12

Google Scholar

[40] J M Cowley. Short- and long-range order parameters in disordered solid solutions. Phys. Rev., 120: 1648-1657, (1960).

DOI: 10.1103/physrev.120.1648

Google Scholar

[41] G E Murch and I V Belova. Chemical diffusion by vacancy pairs in intermetallic compounds with the B2 structure. Philosophical Magazine Letters, 80(8): 569-575, (2000).

DOI: 10.1080/09500830050110503

Google Scholar

[42] L So Darken. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. Aime, 175(184): 41, (1948).

DOI: 10.1007/s11663-010-9344-x

Google Scholar

[43] J R Manning. Diffusion kinetics in crystals. Van Norstrand, Princeton, New Jersey, page 117, (1968).

Google Scholar

[44] I V Belova and G E Murch. Test of the validity of the Darken/Manning relation for diffusion in ordered alloys taking the L12 structure. Philosophical Magazine A, 78(5): 1085-1092, (1998).

DOI: 10.1080/01418619808239976

Google Scholar

[45] M C Cadeville, C E Dahmani, and F Kern. Magnetism and spatial order in Ni-Pt and Co-Pt alloys. J. Magn. Magn. Mater., 54: 1055-1056, (1986).

DOI: 10.1016/0304-8853(86)90378-1

Google Scholar

[46] R E Parra and J W Cable. Neutron study of magnetic-moment distribution in Ni-Pt alloys. Phys. Rev. B, 21: 5494-5504, (1980).

DOI: 10.1103/physrevb.21.5494

Google Scholar

[47] R E Parra, R Medina, and J W Cable. Determination of lattice distortions in concentrated alloys by neutron diffuse scattering. Solid State Communications, 40(6): 679-682, (1981).

DOI: 10.1016/0038-1098(81)90618-9

Google Scholar

[48] B E Warren, B L Averbach, and B W Roberts. Atomic Size Effect in the X-Ray Scattering by Alloys. Journal of Applied Physics, 22(12): 1493-1496, (1951).

DOI: 10.1063/1.1699898

Google Scholar

[49] M Leitner and R Podloucky. Preliminary ab initio calculations of the interaction constants in Ni-Pt alloys. private communication, (2013).

Google Scholar

[50] R Weinkamer, P Fratzl, B Sepiol, and G Vogl. Monte Carlo simulations of Mössbauer spectra in diffusion investigations. Phys. Rev. B, 59: 8622-8625, (1999).

DOI: 10.1103/physrevb.59.8622

Google Scholar

[51] R Feldwisch, B Sepiol, and G Vogl. Elementary diffusion jump of iron atoms in intermetallic phases studied by Mössbauer spectroscopy - I. Fe-Al close to equiatomic stoichiometry. Acta metall. mater., 42(9): 3175 - 3181, (1994).

DOI: 10.1016/0956-7151(94)90416-2

Google Scholar

[52] D Le Bolloc'h, J L Robertson, H Reichert, S C Moss, and M L Crow. X-ray and neutron scattering study of Si-rich Si-Ge single crystals. Phys. Rev. B, 63: 035204, Jan (2001).

DOI: 10.1103/physrevb.63.035204

Google Scholar

[53] Y Shimizu, M Uematsu, and K M Itoh. Experimental evidence of the vacancy-mediated silicon self-diffusion in single-crystalline silicon. Phys. Rev. Lett., 98: 095901, Mar (2007).

DOI: 10.1103/physrevlett.98.095901

Google Scholar