[1]
L van Hove. Correlations in space and time and Born approximation scattering in systems of interacting particles. Physical Review, 95(1): 249, (1954).
DOI: 10.1103/physrev.95.249
Google Scholar
[2]
R Hempelmann. Quasielastic neutron scattering and solid state diffusion. Oxford University Press, Oxford, (2000).
Google Scholar
[3]
J V Michalowicz, J M Nichols, F Bucholtz, and C C Olson. An Isserlis theorem for mixed Gaussian variables: application to the auto-bispectral density. Journal of Statistical Physics, 136(1): 89-102, (2009).
DOI: 10.1007/s10955-009-9768-3
Google Scholar
[4]
P A Lemieux and D J Durian. Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions. J. Opt. Soc. Am., 16(7): 1651-1664, (1999).
DOI: 10.1364/josaa.16.001651
Google Scholar
[5]
A S Gittings and D J Durian. Gaussian and non-Gaussian speckle fluctuations in the diffusingwave spectroscopy signal of a coarsening foam. Appl. Opt., 45(10): 2199-2204, Apr (2006).
DOI: 10.1364/ao.45.002199
Google Scholar
[6]
R Pecora. Dynamic Light Scattering: AQpplications of Photon Correlation Spectroscopy. Springer, (1985).
Google Scholar
[7]
L Cipelletti and E C Weeks. Glassy dynamics and dynamical heterogeneity in colloids. In L. Berthier, G. Biroli, J. -P. Bouchaud, L. Cipelletti, and W. van Saarlos, editors, Dynamical Heterogeneities in Glasses, Colloids and Granular Media, pages 110-151. Oxford University Press, (2011).
DOI: 10.1093/acprof:oso/9780199691470.003.0004
Google Scholar
[8]
J W Haus and K W Kehr. Diffusion in regular and disordered lattices. Physics Reports-Review Section of Physics Letters, 150(5-6): 263-406, JUN (1987).
DOI: 10.1016/0370-1573(87)90005-6
Google Scholar
[9]
M Sutton. X-ray intensity fluctuation spectroscopy. In F Hippert, E Geissler, J-L Hodeau, E Lelievre-Berna, and J-R Regnard, editors, Neutron and X-ray Spectroscopy, pages 297-318. Springer Netherlands, (2006).
DOI: 10.1007/1-4020-3337-0
Google Scholar
[10]
G Vogl and B Sepiol. The elementary diffusion step in metals studied by the interefrence of gamma-rays, X-rays and neutrons. In P. Heitjans and J. Kärger, editors, Diffusion in Condensed Matter, pages 65-91. Springer, (2005).
DOI: 10.1007/3-540-30970-5_2
Google Scholar
[11]
P G De Gennes. Liquid dynamics and inelastic scattering of neutrons. Physica, 25(7-12): 825- 839, (1959).
DOI: 10.1016/0031-8914(59)90006-0
Google Scholar
[12]
S K Sinha and D K Ross. Self-consistent density response function method for dynamics of light interstitials in crystals. Physica B+C, 149(1-3): 51 - 56, (1988).
DOI: 10.1016/0378-4363(88)90218-5
Google Scholar
[13]
M Leitner and G Vogl. Quasi-elastic scattering under short-range order: the linear regime and beyond. J. Phys. -Condens. Mat., 23: 254206, (2011).
DOI: 10.1088/0953-8984/23/25/254206
Google Scholar
[14]
M Leitner, B Sepiol, L-M Stadler, B Pfau, and G Vogl. Atomic diffusion studied with coherent X-rays. Nature Materials, 8(9): 717-720, (2009).
DOI: 10.1038/nmat2506
Google Scholar
[15]
M Stana, M Leitner, M Ross, and M Sepiol. Studies of atomic diffusion in Ni-Pt solid solution by X-ray photon correlation spectroscopy. Journal of Physics: Condensed Matter, 25(6): 065401, (2013).
DOI: 10.1088/0953-8984/25/6/065401
Google Scholar
[16]
M Ross, M Stana, M Leitner, and B Sepiol. Direct observation of atomic network migration in glass. New J. Phys. in press.
DOI: 10.1088/1367-2630/16/9/093042
Google Scholar
[17]
C T Chudley and R J Elliott. Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc., 77: 353, (1961).
DOI: 10.1088/0370-1328/77/2/319
Google Scholar
[18]
G Sauthoff. Intermetallics. Wiley-VCH Verlag GmbH, (2007).
Google Scholar
[19]
R Kutner and I Sosnowska. Thermal neutron scattering from a hydrogen-metal system in terms of a general multi-sublattice jump diffusion model I: Theory. Journal of Physics and Chemistry of Solids, 38(7): 741 - 746, (1977).
DOI: 10.1016/0022-3697(77)90067-1
Google Scholar
[20]
J M Rowe, K Skoeld, H E Flotow, and J J Rush. Quasielastic neutron scattering by hydrogen in the alpha and beta phases of vanadium hydride. Journal of Physics and Chemistry of Solids, 32(1): 41 - 54, (1971).
DOI: 10.1016/s0022-3697(71)80006-9
Google Scholar
[21]
I S Anderson, A Heidemann, J E Bonnet, D K Ross, S K P Wilson, and M W McKergow. Proton residence times in the solid solution phase of the Y-H system studied by quasi-elastic neutron scattering. Journal of the Less Common Metals, 101: 405-418, (1984).
DOI: 10.1016/0022-5088(84)90116-4
Google Scholar
[22]
O G Randl, B Sepiol, G Vogl, R Feldwisch, and K Schroeder. Quasielastic Mössbauer spectroscopy and quasielastic neutron scattering from non-Bravais lattices with differently occupied sublattices. Phys. Rev. B, 49: 8768-8773, (1994).
DOI: 10.1103/physrevb.49.8768
Google Scholar
[23]
B Sepiol and K F Ludwig. High-resolution experimental methods. In W Pfeiler, editor, Alloy Physics: A Comprehensive Reference, pages 707-773. Wiley-VCH, (2007).
Google Scholar
[24]
B Sepiol and G Vogl. Atomistic determination of diffusion mechanism on an ordered lattice. Phys. Rev. Lett., 71(5): 731-734, Aug (1993).
DOI: 10.1103/physrevlett.71.731
Google Scholar
[25]
R Feldwisch, B Sepiol, and G Vogl. Elementary diffusion jump of iron atoms in intermetallic phases studied by Mössbauer spectroscopy - II. from order to disorder. Acta metall. mater., 43(5): 2033-2039, (1995).
DOI: 10.1016/0956-7151(94)00382-r
Google Scholar
[26]
B Sepiol, A Meyer, G Vogl, R Ruffer, A I Chumakov, and A Q R Baron. Time domain study of Fe-57 diffusion using nuclear forward scattering of synchrotron radiation. Phys. Rev. Lett., 76(17): 3220-3223, APR 22 (1996).
DOI: 10.1103/physrevlett.76.3220
Google Scholar
[27]
M Kaisermayr, J Combet, H Ipser, H Schicketanz, B Sepiol, and G Vogl. Nickel diffusion in B2-NiGa studied with quasielastic neutron scattering. Phys. Rev. B, 61(18): 12038-12044, (2000).
DOI: 10.1103/physrevb.61.12038
Google Scholar
[28]
M Kaisermayr, J Combet, H Ipser, H Schicketanz, B Sepiol, and G Vogl. Determination of the elementary jump of Co in CoGa by quasielastic neutron scattering. Phys. Rev. B, 63: 054303, Jan (2001).
DOI: 10.1103/physrevb.63.054303
Google Scholar
[29]
M Kaisermayr, C Pappas, B Sepiol, and G Vogl. Probing jump diffusion in crystalline solids with neutron spin-echo spectroscopy. Phys. Rev. Lett., 87(17), (2001).
DOI: 10.1103/physrevlett.87.175901
Google Scholar
[30]
M Kaisermayr, M Rennhofer, G Vogl, C Pappas, and S Longeville. Neutron spin-echo spectroscopy for diffusion in crystalline solids. Phys. Rev. B, 66: 024302, Jun (2002).
DOI: 10.1103/physrevb.66.024302
Google Scholar
[31]
T Salditt, S Kalbfleisch, M Osterhoff, S P Krüger, M Bartels, K Giewekemeyer, H Neubauer, and M Sprung. Partially coherent nano-focused x-ray radiation characterized by Talbot interferometry. Optics Express, 19(10): 9656-9675, (2011).
DOI: 10.1364/oe.19.009656
Google Scholar
[32]
M Leitner. Studying Atomic Dynamics with Coherent X-rays. Springer, (2012).
Google Scholar
[33]
F Livet, F Bley, J Mainville, R Caudron, S G J Mochrie, E Geissler, G Dolino, D Abernathy, G Grübel, and M Sutton. Using direct illumination CCDs as high-resolution area detectors for X-ray scattering. Nucl. Instrum. Meth. A, 451(3): 596-609, (2000).
DOI: 10.1016/s0168-9002(00)00333-8
Google Scholar
[34]
D Lumma, L B Lurio, S G J Mochrie, and M Sutton. Area detector based photon correlation in the regime of short data batches: Data reduction for dynamic X-ray scattering. Review of Scientific Instruments, 71(9): 3274-3289, (2000).
DOI: 10.1063/1.1287637
Google Scholar
[35]
R Dinapoli, A Bergamaschi, D Greiffenberg, B Henrich, R Horisberger, I Johnson, A Mozzanica, V Radicci, B Schmitt, X Shi, et al. EIGER characterization results. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, (2013).
DOI: 10.1016/j.nima.2013.04.047
Google Scholar
[36]
J Philibert. Atom Movements Diffusion and Mass Transport in Solids, translated from the French by Steven J Rothman. Les Editions de Physique, Paris, France, (1991).
Google Scholar
[37]
H Mehrer. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer Verlag, (2007).
Google Scholar
[38]
D Wolf. Theory of Mössbauer line broadening due to correlated diffusion in crystals. Appl. Phys. Lett., 30(12): 617-619, (1977).
DOI: 10.1063/1.89281
Google Scholar
[39]
F Haider, R Kozubski, and T A Abinandanan. Simulation Techniques. In W Pfeiler, editor, Alloy Physics: A Comprehensive Reference, pages 653-706. Wiley-VCH, (2007).
DOI: 10.1002/9783527614196.ch12
Google Scholar
[40]
J M Cowley. Short- and long-range order parameters in disordered solid solutions. Phys. Rev., 120: 1648-1657, (1960).
DOI: 10.1103/physrev.120.1648
Google Scholar
[41]
G E Murch and I V Belova. Chemical diffusion by vacancy pairs in intermetallic compounds with the B2 structure. Philosophical Magazine Letters, 80(8): 569-575, (2000).
DOI: 10.1080/09500830050110503
Google Scholar
[42]
L So Darken. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. Aime, 175(184): 41, (1948).
DOI: 10.1007/s11663-010-9344-x
Google Scholar
[43]
J R Manning. Diffusion kinetics in crystals. Van Norstrand, Princeton, New Jersey, page 117, (1968).
Google Scholar
[44]
I V Belova and G E Murch. Test of the validity of the Darken/Manning relation for diffusion in ordered alloys taking the L12 structure. Philosophical Magazine A, 78(5): 1085-1092, (1998).
DOI: 10.1080/01418619808239976
Google Scholar
[45]
M C Cadeville, C E Dahmani, and F Kern. Magnetism and spatial order in Ni-Pt and Co-Pt alloys. J. Magn. Magn. Mater., 54: 1055-1056, (1986).
DOI: 10.1016/0304-8853(86)90378-1
Google Scholar
[46]
R E Parra and J W Cable. Neutron study of magnetic-moment distribution in Ni-Pt alloys. Phys. Rev. B, 21: 5494-5504, (1980).
DOI: 10.1103/physrevb.21.5494
Google Scholar
[47]
R E Parra, R Medina, and J W Cable. Determination of lattice distortions in concentrated alloys by neutron diffuse scattering. Solid State Communications, 40(6): 679-682, (1981).
DOI: 10.1016/0038-1098(81)90618-9
Google Scholar
[48]
B E Warren, B L Averbach, and B W Roberts. Atomic Size Effect in the X-Ray Scattering by Alloys. Journal of Applied Physics, 22(12): 1493-1496, (1951).
DOI: 10.1063/1.1699898
Google Scholar
[49]
M Leitner and R Podloucky. Preliminary ab initio calculations of the interaction constants in Ni-Pt alloys. private communication, (2013).
Google Scholar
[50]
R Weinkamer, P Fratzl, B Sepiol, and G Vogl. Monte Carlo simulations of Mössbauer spectra in diffusion investigations. Phys. Rev. B, 59: 8622-8625, (1999).
DOI: 10.1103/physrevb.59.8622
Google Scholar
[51]
R Feldwisch, B Sepiol, and G Vogl. Elementary diffusion jump of iron atoms in intermetallic phases studied by Mössbauer spectroscopy - I. Fe-Al close to equiatomic stoichiometry. Acta metall. mater., 42(9): 3175 - 3181, (1994).
DOI: 10.1016/0956-7151(94)90416-2
Google Scholar
[52]
D Le Bolloc'h, J L Robertson, H Reichert, S C Moss, and M L Crow. X-ray and neutron scattering study of Si-rich Si-Ge single crystals. Phys. Rev. B, 63: 035204, Jan (2001).
DOI: 10.1103/physrevb.63.035204
Google Scholar
[53]
Y Shimizu, M Uematsu, and K M Itoh. Experimental evidence of the vacancy-mediated silicon self-diffusion in single-crystalline silicon. Phys. Rev. Lett., 98: 095901, Mar (2007).
DOI: 10.1103/physrevlett.98.095901
Google Scholar