p.1
p.73
p.95
p.107
p.141
p.159
p.191
Anomalous Kinetics and Regimes of Growth of Intermetallic Phases during Solid State Reactions in Nanosystems
Abstract:
Two interesting features of formation and growth of intermetallic phases in nanoscale solid state reactions will be discussed:Linear-parabolic “normal” growth: it will be summarized that at the very early stages of the growth of an already existing new phase (i.e. when nucleation problems can be neglected) the linear kinetics can be observed due to the so-called diffusion asymmetry. Indeed, it was shown that if the ratio of the diffusion coefficients differ by orders of magnitude in the parent materials (and so also in the new phase), during the growth of a phase bordered by parallel interfaces from the parent phases (normal growth geometry), the shift of the individual interfaces can be linear at the beginning and a transition to the parabolic regime can take place even after a shift of several tens of nanometres. In addition, an AB compound in contact with the pure A and B phases can be dissolved if the diffusion in B is much faster than in either A and AB. This means that the thickness of this phase should decrease, or even can be fully dissolved, at the beginning and only after some time—when the composition in B will be high enough allowing the re-nucleation of this AB phase—will the AB phase grow further.The common problem of two stages of solid state reactions will be revisited: usually the growth can be divided into two stages: a) the formation (nucleation) and lateral growth of the new phases and b) the “normal” growth of the already continuous phase. It was concluded in different previous reviews that in stage b) in the majority of cases the parabolic growth was observed in accordance with the above i) point: the linear-parabolic transition length was typically below 1 μm, which was the lower limit of detection in many previous investigations. On the other hand recently the application of the linear-parabolic growth law for the analysis of experimental data obtained in nanoscale reactions became very popular, not making a clear distinction between a) and b) stages. It will be emphasized here that care should be taken in all cases when the experimental methods applied provide information only about the increase of the amount of the reaction product and there is no information where and how the new phase (s) grow. We have illustrated in a series of low temperature experiments - where the bulk diffusion processes are frozen - that even in this case a full homogeneous phase can be formed by cold homogenization called Grain Boundary Diffusion Induced Solid State Reaction (GBDIREAC). In this case first the reaction starts by grain-boundary (GB) diffusion and nucleation of the new phase at GBs or their triple junctions, then the growth of the new phase happens by the shift of the new interfaces perpendicular to the original GB. This is a process similar to the diffusion induced grain-boundary motion (DIGM) or diffusion induced recrystallization (DIR) phenomena and in this case the interface shift, at least in the first stage of the reaction until the parent phases have been consumed, can be considered constant. This means that the amount of the phase increases linearly with time, giving a plausible explanation for the linear kinetics frequently observed in stage a).
Info:
Periodical:
Pages:
107-139
Citation:
Online since:
September 2014
Authors:
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] J. Philibert, Reactive interdiffusion: Mater. Sci. Forum, Vol. 155-156 (1994) 15-30.
[2] F. d'Heurle, P. Gas, J. Philibert, and O. Thomas, Considerations Regarding Reactive Diffusion: Parabolic and Linear Rates, Metals Materials and Processes 11, (1999) 217- 232.
[3] B. E. Deal and A. Groves, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36, (1965) 3770-3778.
[4] F. Nemouchi, D. Mangelinck, C. Bergman, P. Gas, U. Smith, Differential scanning calorimetry analysis of the linear parabolic growth of nanometric Ni silicide thin films on a Si substrate, App. Phys. Lett. 86, (2005) 041903/1-3.
DOI: 10.1063/1.1852727
[5] Ya. Ye. Geguzin, Yu. S. Kaganovskiy, L. M. Paritskaya, V. I. Solunskiy, Kinetics of the motion of the interface during mutual diffusion in a two-component system, Phys. Met. Metallogr. 47, (1980) 127-132.
[6] U. Gösele, K. N. Tu, Growth kinetics of planar binary diffusion couples: Thin-film case" versus "Bulk cases, J. Appl. Phys. 53 (1982) 3252-3260.
DOI: 10.1063/1.331028
[7] D.L. Beke, General introduction, in D.L. Beke (ed. ) Diffusion in Semcondutors, Landolt- Börnstein New Series III/33a, Springer, Berlin 1998, p.1/1-21.
[8] F.M. d'Heurle, P. Gas, Kinetics of formation of silicides: A review, J. Mater, Res. 1 (1986) 205-221.
[9] H. Schmalzried, Chemical Kinetics of Solids VCH Publishers, New York, 1995 pp.235-264.
[10] F.K. van Loo, Multiphase diffusion in binary and ternary solid-state systems, Progess in Sokis State Chemistry, 53-55 (1990), 47-99.
[11] M. Hillert, Diffusion and interface control of reactions in alloys, Metall. Trans. A 6, (1975) 5-19.
[12] P. J. Desre, A. R. Yavari, Supression of crystal nucleation in amorphous layers in sharp concentration gradients, Phys. Rev. Lett. 64, (1990) 1533-1536.
[13] A. M. Gusak, F. Hodaj, A. O. Bogatyev, Kinetics of nucleation in the concentration gradient, J. Phys.: Condens. Matter 13, (2001) 2767-2771.
[14] B. Pieraggi, R. A. Rapp, J. P. Hirth, Interface dynamics in diffusion-driven phase transformations for metallic systems, Scr. Metall. Mater. 30, (1994) 1491-1494.
[15] F. J. J. van Loo, B. Pieraggi, R. A. Rapp, Interface migration and the kirkendall effect in diffusion-driven phase transformations, Acta Metall. Mater. 38, (1990) 1769-1779.
[16] B. Pieraggi, R. Rapp, F. van Loo, J. Hirth, Interfacial dynamics in diffusion-driven phase transformations, Acta Metall. Mater. 38, (1990) 1781-1788.
[17] A.M. Gusak, Linear phase growth with non-equilibrium vacancies, Mat. Sci. Forum, Vol. 155-156 (1994) 55-58.
[18] Z. Erdelyi, D.L. Beke, Stress effects on diffusional interface sharpening in ideal binary alloys, Phys. Rev. B. 68 (2003) 092102.
[19] G. Schmitz, C.B. Ene, C. Nowak, Reactive diffusion in nanostructures of spherical symmetry, Acta Materialia 57 (2009) 2673–2683.
[20] Z. Erdélyi, G. Schmitz, Reactive diffusion and stresses in spherical geometry, Acta Materialia 60 (2012) 1807-1817.
[21] Z. Erdélyi, B Parditka, D.L. Beke, Stress effects on the kinetics of nanoscale diffusion processes, Scripta Materialia 64 (2011) 938-941.
[22] D.L. Beke. Z. Erdélyi, Resolution of the diffusional paradox predicting infinitely fast kinetics on the nanoscale, Phys. Rev. B73 (2006) 035426/1-7.
[23] J. Bernardini and D.L. Beke: Diffusion in Nanomaterials" in " Nanocrystalline Metals and Oxides: Selected Properties and Applications, (Eds. P. Knauth and J. Schoonman, Kluwer Publ. Boston, 2001) 41-53.
[24] D.L. Beke, C. Cserhati, Z. Erdelyi, I.A. Szabo, Segregation in Nanostructures" in "Advances in Nanophase Materials and Nanotechnology" Vol. "Nanoclusters and Nanocrystals, (Ed. H.S. Nalwa, American Scientific Publ. California USA, 2003) p.211.
[25] D.L. Beke, G.A. Langer, A. Csik, Z. Erdelyi, M. Kis-Varga, I.A. Szabo, Z. Papp, Diffusion and thermal stability in multilayers, Defect and Diffusion Forum, 194-199, (2001), pp.1403-1416.
[26] D.L. Beke, P. Nemes, Z. Erdelyi, I.A. Szabo, D.G. Langer, Stress effects and non-linearities in diffusional mixing of multilayers, MRS Mat. Res. Soc. Symp. Proc. Vol. 527 (Eds. Y. Mishin, G. Vogl, N. Cowern, R. Catlow and D. Farkas) Warrendale, 1998, pp.99-110.
DOI: 10.1557/proc-527-99
[27] A. Csik, G. Langer, D.L. Beke, Z. Erdelyi, M., Menyhard, A. Sulyok, A. Interdiffusion in amorphous Si/Ge multilayers by Auger depth profiling technique, Journal of Appl. Phys. 89/1, (2001) pp.804-806.
DOI: 10.1063/1.1331330
[28] Z. Erdelyi, CH, Girardeaux, ZS. Tőkei, D.L. Beke, C. Cserhati, C., Rolland, Investigation of the interplay of nickel dissolution and copper segregation in Ni/Cu(111) system., A. Surf. Sci., 496/1-2, (2002) 129-140.
[29] Z. Erdelyi, D.L. Beke and I.A. Szabo, Interface sharpening instead of broadening by diffusion in ideal binary alloys, Phys, Rev. Letters, 89 (2002) p.165901.
[30] Z. Erdelyi, G. L. Katona, D.L. Beke, Nonparabolic nanoscale shift of phase boundaries in binary systems with restricted solubility, Phys. Rev. B69, (2004) 113407-1-4.
[31] G.L. Katona, D.L. Beke, Z. Erdelyi, Ch. Dietrich, F. Weigl, H-G. Boyen, B. Koslowski, P. Ziemann, Experimental evidence for a nonparabolic interface shift on the nanoscale during the dissolution of Ni into bulk Au (111), Phys. Rev. B. Vol. 71 (2005).
[32] Z. Erdelyi, M. Sladecek, L-M, Stadler, I. Zizak, G.A. Langer, M. Kis-Varga, D.L. Beke, B. Sepiol, Transient Interface Sharpening in Miscible Alloys, Science, 306 (2004) 1913-(1915).
[33] D.L. Beke, Z. Erdélyi, Growth kinetics on nanoscale: finite diffusion permeability of interfaces, Defect and Diffusion Vol. 266 (2007) 1-12.
[34] Z. Erdélyi, D.L. Beke, Nanoscale volume diffusion: Diffusion in thin films, multilayers and nanoobjects (hollow nanoparticles), J. of Mat. Sci., 46 (2011), 6465-6483.
[35] D.L. Beke, Z. Erdélyi, Z. Balogh, Cs. Cserháti, G.L. Katona, Non Parabolic Shift of Interfaces and Effect of Diffusion Asymmetry on Nanoscale Solid State Reactions, Journal of Nano Research Vol. 7 (2009) 43-49.
[36] Z. Erdélyi, D.L. Beke, A. Taranovskyy, Dissolution and off-stoichiometric formation of compound layers in solid state reactions, Appl. Phys. Lett. Vol. 93 (2008), p.133110.
DOI: 10.1063/1.2905334
[37] D.L. Beke, G.A. Langer, G. Molnár, G. Erdélyi, G.L. Katona, A. Lakatos, K. Vad, Kinetic pathways of diffusion and solid-state reactions in nanostructured thin films, Phil. Mag. 93 (2013), 1960-(1970).
[38] R.M. Mazo: Bownian Motion, Fluctuations, Dynamics and Applications, Clarendon Press, Oxford, (2002) p.52 and 55, 56.
[39] H. Cook H, D. de Fontaine D, J.E. Hilliard A model for diffusion on cubic lattices and its application to the early stages of ordering, Acta Metall. 17 (1969) 765-773.
[40] Z. Erdélyi, D.L. Beke, P. Nemes, G.A. Langer, On the range of validity of the continuum approach for non-linear diffusional mixing of multilayers. Phil. Mag. A 79, (1999) 1757-1768.
[41] G. Martin, Atomic mobility in Cahn's diffusion model, Phys Rev. B Vol. 41 (1990), 2279-2283.
[42] Z. Erdélyi and D. L. Beke, Phys. Stress effects on the kinetics of nanoscale diffusion processes, Rev. B 70 (2004) 245428-1-6.
[43] C. Cserhati, H, Bakker, D.L. Beke, Kinetics of surface segregation in alloys, Surface Science 290 (1993) 345-361.
[44] D.L. Beke, Z. Erdélyi, On the Validity of the Einstein's Relation and the Fick I Law on the Nanoscale, Diffusion Fundamentals 2 (2005) 43. 1 - 43. 16.
[45] D.L. Beke, Z. Erdélyi, I.A. Szabó, C. Cserháti, Nanoscale effects in diffusion, in Nanodiffusion, (Ed. D.L. Beke) special issue of Journal of Metastable and Nanocrystalline Materials, Vol. 19 (2004), pp.107-128.
[46] A.L. Greer and F. Speaphen, Synthetic Modulated Structures, (Eds. L.L. Chang and B.C. Giessen) Academic Press, New York (1985) p.419.
[47] H. Yamahuchi, J.E. Hilliard, A comment on Cahn's diffusion equation, Scripta Met. Vol. 6 (1972) 909-914.
[48] M. Hillert, A solid-solution model for inhomogeneous systems, Acta Metall. 9 (1961) 525-535.
[49] M. Hillert, The discrete lattice model for diffusion revisited, Scripta Mater. 44 (2001) 1095-1097.
[50] J. W. Cahn, Modelling the evolution of structure in unstable solid solution phases by diffusional mechanisms, Scand. J. Metall. 20 (1991) 9-17.
[51] A. Saul, B. Legrand, G. Treglia, Link between the surface wetting in Cu(Ag) and the layer-by-layer dissolution mode of a thick Ag deposit on a Cu substrate, Surf. Sci. Vol. 331-333 (1995) 805-810.
[52] S. Delage, B. Legrand, F. Soisson, A. Saul, Dissolution modes of Fe/Cu and Cu/Fe deposits, Phys. Rev. B Vol. 58, (1998) 15810-15820.
[53] J. M. Roussel, A Saul, G. Treglia, B. Legrand, Layer-by-layer versus surfactant dissolution modes in heteroepitaxy, Phys. Rev. B Vol. 60, (1999), 13890-1390.
[54] Z. Balogh, P. Stender, M.R. Chellali, G. Schmitz, Investigation of interfaces by atom probe tomography. Metall. Mater. Trans. A, 44 (2013) 4487-4495.
[55] Z. Balogh, MR Chellali, GH Greiwe, G. Schmitz, Z. Erdelyi, Interface sharpening in miscible Ni/Cu multilayers studied by atom probe tomography, Appl. Phys. Lett. 99: (18) (2011) 181902.
DOI: 10.1063/1.3658390
[56] Y. Iguchi, Z. Erdélyi, G.A. Langer, E. Magome, K. Sumitani, A. Csik, D.L. Beke, T. Mashimo, Phyl. Mag. Lett. 93 (2013) 697-702.
[57] P. Maugis, G. Martin, Interface transfer coefficient in second-phase-growth models, Phys. Rev. B Vol. 49 (1994) 11580-11587.
[58] C. Cserháti, Z. Balogh, Gy. Glodán, A. Csik, G.A. Langer, Z. Erdélyi, G.L. Katona, D.L. Beke, I. Zizak, N. Darowski, E. Dudzik, R. Feyerherm: J. of Appl. Phys. 104, (2008) 024311/1-6.
DOI: 10.1063/1.2957071
[59] B. Parditka, M. Verezhak, Z. Balogh, A. Csik, G.A. Langer, D.L. Beke, M. Ibrahim, G. Schmitz, Z. Erdélyi, Acta Materialia 61 (2013) 7173.
[60] Z. Balogh, Z. Erdélyi, D.L. Beke, G. A. Langer, A. Csik, H-G. Boyen, U. Wiedwald, P. Ziemann, A. Portavoce, Ch. Girardeaux, Transition from anomalous kinetics toward Fickian diffusion for Si dissolution into amorphous Ge, Appl. Phys. Lett. Vol. 92 (2008).
DOI: 10.1063/1.2908220
[61] S.M. Prokes: PhD Thesis (Harward University) 1986 p.113.
[62] C.A. Mackleit, Diffusion of Iron, Cobalt, and Nickel in Single Crystals of Pure Copper, Phys. Rev. Vol. 109 (1958), 1964-(1970).
[63] G.L. Katona, Z. Erdélyi, D.L. Beke, Linear-parabolic shift of initially sharp interface in AB diffusion couple above the ordering temperature, Phil. Mag. 92 (2013), 478-486.
[64] A. Portavoce, G. Treglia, Theoretical investigation of the influence of reaction and diffusion kinetics upon thin-film reactive diffusion, Phys. Rev. B85 (2012) 224101/1-12.
[65] A. Portavoce, G. Treglia, Physical origin of thickness-controlled sequential phase formation during reactive diffusion: Atomistic modelling, Phys. Rev. B82 (2010) 25431/1-12.
[66] Z. Erdélyi, Z. Balogh, D.L. Beke, Kinetic critical radius in nucleation and growth processes – Trapping effect, Acta Mater, 58 (2010) 5639-5645.
[67] M. Hillert, G.R. Purdy, Chemically induced grain boundary migration, Acta Met. 26 (1978) 333-340.
[68] R.D. Doherty, Grain Boundary Motion, Diffusion-Induced, in Encyclopedia of materials science and engineering. Suplementry Vol. 3. (ed. R.W. Cahn), Pergamon Press, 1993, pp.1695-1698.
[69] K.N. Tu, Kinetics of thin‐film reactions between Pb and the AgPd alloy, J. Appl. Phys. 48 (1977) 3400-3404.
DOI: 10.1063/1.324182
[70] Li Chongmo, M. Hillert, A metallographic study of diffusion-induced grain boundary migration in the Fe-Zn system, Acta Met. 29 (1981) 1949-(1960).
[71] M. Hillert, On the driving force for diffusion induced grain boundary migration, Scripta Met. 17 (1983) 237-240.
[72] R.W. Balluffi, J.W. Cahn, Mechanism for diffuison induced grain boundary migration, Acta Met. 29 (1981) 493-500.
[73] O. Penrose, On the elastic driving force in diffusion-induced grain boundary motion, Acta Mater. 52 (2004), 3901-3910.
[74] Ya. Ye. Geguzin, Yu.S. Kaganovskiy, L.N. Paritskaya, Cold homogenization during interdiffusion in dispersed media, Phys. Met. Metall. 54 (1982) 120-130.
[75] Yu. Kaganovskii, L. N. Paritskaya, Diffusion in nanomaterials, in Encyclopedia of Nanoscience and Nanotechnology (ed. H.S. Nalwa) 2004, pp.1-28.
[76] G. Schmitz, D. Baither, M. Kasprzak, T.H. Kim, B. Kruse, The hidden link between diffusion-induced recrystallization and ideal strength of metals, Sripta Mater., 63 (2010) 484-487.
[77] C. Y. Ma, E. Rabkin, W. Gust, S, E. Hsu, On the kinetic behaviour and driving force of diffusion induced grain boundary migration, Acta metall, mater. 43 (1995) 3113-3124.
[78] S. Inomata, M.O.M. Kajihara, Diffusion-induced recrystallization in the Cu(Pd) system at complete solid-solution temperatures, J. Mater. Sci. 46 (2011) 2410-2421.
[79] F. Hartung, G. Schmitz, Interdiffusion and reaction of metals: The influence and relaxation of mismatch-induced stress, Phys. Rev. B 64 (2001) 245418-1-13.
[80] D. Baiter, T.H. Kim,G. Schmitz, Diffusion-induced recrystallization in silver–palladium layers, Scripta Mater. 58 (2008) 99-102.
[81] M. Kajihara, Chemical driving force for diffusion-induced recrystallization or diffusion-induced grain boundary migration in a binary system consisting of nonvolatile elements, Scripta Mater. 54 (2006) 1767-1772.
[82] J. Sheng, U. Welzer, E.J. Mittemeijer, Interdiffusion and stress development in Ni-Cu thin film diffusion couples, Z. Kristallogr. Suppl. 30 (2009) 247-252.
[83] M. Kasprzak, D. Baither, G. Schmitz, Diffusion induced recrystallization in nickel/palladium multilayers, Acta Mater., 59 (2011) 1734-1741.
[84] T. Takenaka, M. Kajihara, Fast Penetration of Sn into Ag by Diffusion Induced Recrystallization, Mater. Trans. 47 (2006) 822-828.
[85] J. Chakraborty, U. Welzer, E.J. Mittemeijer, Interdiffusion, phase formation, and stress development in Cu–Pd thin-film diffusion couples: Interface thermodynamics and mechanisms, J. Appl. Phys. 103 (2008) 113512-1-15.
DOI: 10.1063/1.2938079
[86] V.M. Koshevich, A.N. Gladkikh, M.V. Karpovskyi, V.N. Klimenko, Interdiffusion in Two-Layer Pd/Ag Films II. Cold, Homogenization Mechanisms, Interface Sci. 2 (1994) 261-270.
DOI: 10.1007/bf00215172
[87] L.N. Paritskaya, Yu. Kaganovskii, V.V. Bogdanov, Size-dependent interdiffusion in nanomaterials, Solid State Phenom. 101–102 (2005) 123-130.
[88] A. Lakatos, G. Erdelyi, A. Makovec, G.A. Langer, A. Csik, K. Vad, D.L. Beke, Investigation of diffusional intermixing in Si/Co/Ta system by Secondary Neutral Mass Spectrometry, Vacuum 86 (2012) 724-728.
[89] G. Molnár, G. Erdélyi, G A. Langer, D.L. Beke, A. Csik, G.L. Katona, L. Daróczi, M. Kis-Varga, A. Dudás, Evolution of concentration profiles in Pd/Cu systems studied by SNMS technique, Vacuum, 98 (2013) 70-74.
[90] - G.L. Katona, I. Vladimirsky, I.M. Makogon, S. I Sidorenko, L. Daroczi. A. Csik, G. Beddies, M. Albrecht, D.L. Beke, Grain boundary diffusion induced reaction layer formation in Fe/Pt thin films, Applied Physics A: Materials Science and Processing, 115 (2013).
[91] S.S. Shenouda, G.A. Langer, G.L. Katona, S. Kéki, M. Zsuga, D.L. Beke, Hungarian Patent, Registration no: P1300672/(2013).
[92] D.L. Beke, I. Gődény, G. Eredélyi, F.J. Kedves, Temperature dependence of grain-boundary diffusion of 65Zn in polycrystalline aluminium, Phil. Mag. A 56 (1987) 659-671.
[93] B. Bokstein, V. Ivanov, O. Oreshina, A. Peteline, S. Peteline, Direct experimental observation of accelerated Zn diffusion along triple junctions in A1, Mater. Sci. Eng. A 302 (2001) 151-153.
[94] A. Lakatos, G. Erdelyi, G.A. Langer, L. Daroczi, K. Vad, A. Csik, A. Dudas, D.L. Beke, Investigations of diffusion kinetics in Si/Ta/Cu/W and Si/Co/Ta systems by secondary neutral mass spectrometry, Vacuum 84 (2010) 953-957.
[95] A. Lakatos, A. Csik, G.A. Langer, G. Erdelyi, G.L. Katona, L. Daroczi, K. Vad, J. Toth, D.L. Beke, Investigations of failure mechanisms at Ta and TaO diffusion barriers by secondary neutral mass spectrometry, Vacuum 84 (2010) 130-134.
[96] A. Makovecz, G. Erdelyi, D.L. Beke, Grain boundary diffusion in thin films with a bimodal grain boundary structure, Thin Solid Film 520 (2012) 2362-2367.
[97] D. L Beke, A. Lakatos, G. Erdelyi, A. Makovecz, G.A. Langer, L. Daroczi, K. Vad, A. Csik, Investigation of grain boundary diffusion in thin films by SNMS technique, Defect Diffusion Forum 312–315 (2012) 1208-1215.
[98] A. Lakatos, G.A. Langer, A. Csik, C. Cserhati, M. Kis-Varga, L. Daroczi, G.L. Katona, Z. Erdelyi, G. Erdelyi, K. Vad, D.L. Beke, Appl. Phys. Lett. 97 (2010) 233103.
DOI: 10.1063/1.3524491
[99] J. Chakraborty, U. Welzer, E.J. Mittemeijer, Mechnism of interdiffuison in Pd-Cu thin film couples, Thin Solid Film 518 (2010) 2010-(2020).
[100] N. Jadhav, E.J. Buchovecky, L. Reinbold, S. Kumar, A.F. Bower, E. Chason, Understanding the Correlation Between Intermetallic Growth, Stress Evolution, and Sn Whisker Nucleation, IEEE Trans. Electron. Packag. Manuf. 33 (2010) 183-192.
[101] Y. Yamamoto, S. Uemura, K. Yoshida, M. Kajihara, Kinetic features of diffusion induced recrystallization in the Cu(Ni) system at 873 K, Mat. Sci. Eng. A 303 (2002) 262-269.
[102] J. D. Pan, R. W. Balluffi, Diffusion induced grain boundary migration in Au/Cu and Au/Ag thin films, Acta Met. 30 (1982) 861-870.
[103] F.M. d'Heurle, Nucleation of a new phase from the interaction of two adjacent phases: Some silicides, J. Mater, Res. 3 (1988) 167-195.
[104] J.C. Ciccariello, S. Poise, P. Gas, Lattice and grain boundary self‐diffusion in Ni2Si: Comparison with thin‐film formation, J. of Appl. Phys. 67 (1990) 3315-3322.
DOI: 10.1063/1.345367
[105] K. Hoummada, D. Mangerinck, A. Portavoce, Kinetic of formation of Ni and Pd silicides: determination of interfacial mobility and interdiffusion coefficients by in-situ techniques, Solid State Phenom. 172-174 (2011) 640-645.
[106] K.N. Tu, B.S. Berry, X‐ray study of interdiffusion in bimetallic Cu/Au films, J. Appl. Phys. 43 (1972) 3283-3290.
DOI: 10.1063/1.1661708
[107] J.A. Borders, Ion back-scattering analysis of interdiffusion in Cu-Au thin films, Thin Solid Films, 19 (1973) 359-370.