Anomalous Kinetics and Regimes of Growth of Intermetallic Phases during Solid State Reactions in Nanosystems

Article Preview

Abstract:

Two interesting features of formation and growth of intermetallic phases in nanoscale solid state reactions will be discussed:Linear-parabolic “normal” growth: it will be summarized that at the very early stages of the growth of an already existing new phase (i.e. when nucleation problems can be neglected) the linear kinetics can be observed due to the so-called diffusion asymmetry. Indeed, it was shown that if the ratio of the diffusion coefficients differ by orders of magnitude in the parent materials (and so also in the new phase), during the growth of a phase bordered by parallel interfaces from the parent phases (normal growth geometry), the shift of the individual interfaces can be linear at the beginning and a transition to the parabolic regime can take place even after a shift of several tens of nanometres. In addition, an AB compound in contact with the pure A and B phases can be dissolved if the diffusion in B is much faster than in either A and AB. This means that the thickness of this phase should decrease, or even can be fully dissolved, at the beginning and only after some time—when the composition in B will be high enough allowing the re-nucleation of this AB phase—will the AB phase grow further.The common problem of two stages of solid state reactions will be revisited: usually the growth can be divided into two stages: a) the formation (nucleation) and lateral growth of the new phases and b) the “normal” growth of the already continuous phase. It was concluded in different previous reviews that in stage b) in the majority of cases the parabolic growth was observed in accordance with the above i) point: the linear-parabolic transition length was typically below 1 μm, which was the lower limit of detection in many previous investigations. On the other hand recently the application of the linear-parabolic growth law for the analysis of experimental data obtained in nanoscale reactions became very popular, not making a clear distinction between a) and b) stages. It will be emphasized here that care should be taken in all cases when the experimental methods applied provide information only about the increase of the amount of the reaction product and there is no information where and how the new phase (s) grow. We have illustrated in a series of low temperature experiments - where the bulk diffusion processes are frozen - that even in this case a full homogeneous phase can be formed by cold homogenization called Grain Boundary Diffusion Induced Solid State Reaction (GBDIREAC). In this case first the reaction starts by grain-boundary (GB) diffusion and nucleation of the new phase at GBs or their triple junctions, then the growth of the new phase happens by the shift of the new interfaces perpendicular to the original GB. This is a process similar to the diffusion induced grain-boundary motion (DIGM) or diffusion induced recrystallization (DIR) phenomena and in this case the interface shift, at least in the first stage of the reaction until the parent phases have been consumed, can be considered constant. This means that the amount of the phase increases linearly with time, giving a plausible explanation for the linear kinetics frequently observed in stage a).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-139

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Philibert, Reactive interdiffusion: Mater. Sci. Forum, Vol. 155-156 (1994) 15-30.

Google Scholar

[2] F. d'Heurle, P. Gas, J. Philibert, and O. Thomas, Considerations Regarding Reactive Diffusion: Parabolic and Linear Rates, Metals Materials and Processes 11, (1999) 217- 232.

Google Scholar

[3] B. E. Deal and A. Groves, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36, (1965) 3770-3778.

Google Scholar

[4] F. Nemouchi, D. Mangelinck, C. Bergman, P. Gas, U. Smith, Differential scanning calorimetry analysis of the linear parabolic growth of nanometric Ni silicide thin films on a Si substrate, App. Phys. Lett. 86, (2005) 041903/1-3.

DOI: 10.1063/1.1852727

Google Scholar

[5] Ya. Ye. Geguzin, Yu. S. Kaganovskiy, L. M. Paritskaya, V. I. Solunskiy, Kinetics of the motion of the interface during mutual diffusion in a two-component system, Phys. Met. Metallogr. 47, (1980) 127-132.

Google Scholar

[6] U. Gösele, K. N. Tu, Growth kinetics of planar binary diffusion couples: Thin-film case" versus "Bulk cases, J. Appl. Phys. 53 (1982) 3252-3260.

DOI: 10.1063/1.331028

Google Scholar

[7] D.L. Beke, General introduction, in D.L. Beke (ed. ) Diffusion in Semcondutors, Landolt- Börnstein New Series III/33a, Springer, Berlin 1998, p.1/1-21.

Google Scholar

[8] F.M. d'Heurle, P. Gas, Kinetics of formation of silicides: A review, J. Mater, Res. 1 (1986) 205-221.

Google Scholar

[9] H. Schmalzried, Chemical Kinetics of Solids VCH Publishers, New York, 1995 pp.235-264.

Google Scholar

[10] F.K. van Loo, Multiphase diffusion in binary and ternary solid-state systems, Progess in Sokis State Chemistry, 53-55 (1990), 47-99.

DOI: 10.1016/0079-6786(90)90007-3

Google Scholar

[11] M. Hillert, Diffusion and interface control of reactions in alloys, Metall. Trans. A 6, (1975) 5-19.

Google Scholar

[12] P. J. Desre, A. R. Yavari, Supression of crystal nucleation in amorphous layers in sharp concentration gradients, Phys. Rev. Lett. 64, (1990) 1533-1536.

DOI: 10.1103/physrevlett.64.1533

Google Scholar

[13] A. M. Gusak, F. Hodaj, A. O. Bogatyev, Kinetics of nucleation in the concentration gradient, J. Phys.: Condens. Matter 13, (2001) 2767-2771.

DOI: 10.1088/0953-8984/13/12/302

Google Scholar

[14] B. Pieraggi, R. A. Rapp, J. P. Hirth, Interface dynamics in diffusion-driven phase transformations for metallic systems, Scr. Metall. Mater. 30, (1994) 1491-1494.

DOI: 10.1016/0956-716x(94)90251-8

Google Scholar

[15] F. J. J. van Loo, B. Pieraggi, R. A. Rapp, Interface migration and the kirkendall effect in diffusion-driven phase transformations, Acta Metall. Mater. 38, (1990) 1769-1779.

DOI: 10.1016/0956-7151(90)90019-d

Google Scholar

[16] B. Pieraggi, R. Rapp, F. van Loo, J. Hirth, Interfacial dynamics in diffusion-driven phase transformations, Acta Metall. Mater. 38, (1990) 1781-1788.

DOI: 10.1016/0956-7151(90)90020-h

Google Scholar

[17] A.M. Gusak, Linear phase growth with non-equilibrium vacancies, Mat. Sci. Forum, Vol. 155-156 (1994) 55-58.

DOI: 10.4028/www.scientific.net/msf.155-156.55

Google Scholar

[18] Z. Erdelyi, D.L. Beke, Stress effects on diffusional interface sharpening in ideal binary alloys, Phys. Rev. B. 68 (2003) 092102.

DOI: 10.1103/physrevb.68.092102

Google Scholar

[19] G. Schmitz, C.B. Ene, C. Nowak, Reactive diffusion in nanostructures of spherical symmetry, Acta Materialia 57 (2009) 2673–2683.

DOI: 10.1016/j.actamat.2009.02.021

Google Scholar

[20] Z. Erdélyi, G. Schmitz, Reactive diffusion and stresses in spherical geometry, Acta Materialia 60 (2012) 1807-1817.

DOI: 10.1016/j.actamat.2011.12.006

Google Scholar

[21] Z. Erdélyi, B Parditka, D.L. Beke, Stress effects on the kinetics of nanoscale diffusion processes, Scripta Materialia 64 (2011) 938-941.

DOI: 10.1016/j.scriptamat.2011.01.040

Google Scholar

[22] D.L. Beke. Z. Erdélyi, Resolution of the diffusional paradox predicting infinitely fast kinetics on the nanoscale, Phys. Rev. B73 (2006) 035426/1-7.

DOI: 10.1103/physrevb.73.035426

Google Scholar

[23] J. Bernardini and D.L. Beke: Diffusion in Nanomaterials" in " Nanocrystalline Metals and Oxides: Selected Properties and Applications, (Eds. P. Knauth and J. Schoonman, Kluwer Publ. Boston, 2001) 41-53.

Google Scholar

[24] D.L. Beke, C. Cserhati, Z. Erdelyi, I.A. Szabo, Segregation in Nanostructures" in "Advances in Nanophase Materials and Nanotechnology" Vol. "Nanoclusters and Nanocrystals, (Ed. H.S. Nalwa, American Scientific Publ. California USA, 2003) p.211.

Google Scholar

[25] D.L. Beke, G.A. Langer, A. Csik, Z. Erdelyi, M. Kis-Varga, I.A. Szabo, Z. Papp, Diffusion and thermal stability in multilayers, Defect and Diffusion Forum, 194-199, (2001), pp.1403-1416.

DOI: 10.4028/www.scientific.net/ddf.194-199.1403

Google Scholar

[26] D.L. Beke, P. Nemes, Z. Erdelyi, I.A. Szabo, D.G. Langer, Stress effects and non-linearities in diffusional mixing of multilayers, MRS Mat. Res. Soc. Symp. Proc. Vol. 527 (Eds. Y. Mishin, G. Vogl, N. Cowern, R. Catlow and D. Farkas) Warrendale, 1998, pp.99-110.

DOI: 10.1557/proc-527-99

Google Scholar

[27] A. Csik, G. Langer, D.L. Beke, Z. Erdelyi, M., Menyhard, A. Sulyok, A. Interdiffusion in amorphous Si/Ge multilayers by Auger depth profiling technique, Journal of Appl. Phys. 89/1, (2001) pp.804-806.

DOI: 10.1063/1.1331330

Google Scholar

[28] Z. Erdelyi, CH, Girardeaux, ZS. Tőkei, D.L. Beke, C. Cserhati, C., Rolland, Investigation of the interplay of nickel dissolution and copper segregation in Ni/Cu(111) system., A. Surf. Sci., 496/1-2, (2002) 129-140.

DOI: 10.1016/s0039-6028(01)01571-0

Google Scholar

[29] Z. Erdelyi, D.L. Beke and I.A. Szabo, Interface sharpening instead of broadening by diffusion in ideal binary alloys, Phys, Rev. Letters, 89 (2002) p.165901.

DOI: 10.1103/physrevlett.89.165901

Google Scholar

[30] Z. Erdelyi, G. L. Katona, D.L. Beke, Nonparabolic nanoscale shift of phase boundaries in binary systems with restricted solubility, Phys. Rev. B69, (2004) 113407-1-4.

DOI: 10.1103/physrevb.69.113407

Google Scholar

[31] G.L. Katona, D.L. Beke, Z. Erdelyi, Ch. Dietrich, F. Weigl, H-G. Boyen, B. Koslowski, P. Ziemann, Experimental evidence for a nonparabolic interface shift on the nanoscale during the dissolution of Ni into bulk Au (111), Phys. Rev. B. Vol. 71 (2005).

DOI: 10.1103/physrevb.71.115432

Google Scholar

[32] Z. Erdelyi, M. Sladecek, L-M, Stadler, I. Zizak, G.A. Langer, M. Kis-Varga, D.L. Beke, B. Sepiol, Transient Interface Sharpening in Miscible Alloys, Science, 306 (2004) 1913-(1915).

DOI: 10.1126/science.1104400

Google Scholar

[33] D.L. Beke, Z. Erdélyi, Growth kinetics on nanoscale: finite diffusion permeability of interfaces, Defect and Diffusion Vol. 266 (2007) 1-12.

DOI: 10.4028/www.scientific.net/ddf.266.1

Google Scholar

[34] Z. Erdélyi, D.L. Beke, Nanoscale volume diffusion: Diffusion in thin films, multilayers and nanoobjects (hollow nanoparticles), J. of Mat. Sci., 46 (2011), 6465-6483.

DOI: 10.1007/s10853-011-5720-4

Google Scholar

[35] D.L. Beke, Z. Erdélyi, Z. Balogh, Cs. Cserháti, G.L. Katona, Non Parabolic Shift of Interfaces and Effect of Diffusion Asymmetry on Nanoscale Solid State Reactions, Journal of Nano Research Vol. 7 (2009) 43-49.

DOI: 10.4028/www.scientific.net/jnanor.7.43

Google Scholar

[36] Z. Erdélyi, D.L. Beke, A. Taranovskyy, Dissolution and off-stoichiometric formation of compound layers in solid state reactions, Appl. Phys. Lett. Vol. 93 (2008), p.133110.

DOI: 10.1063/1.2905334

Google Scholar

[37] D.L. Beke, G.A. Langer, G. Molnár, G. Erdélyi, G.L. Katona, A. Lakatos, K. Vad, Kinetic pathways of diffusion and solid-state reactions in nanostructured thin films, Phil. Mag. 93 (2013), 1960-(1970).

DOI: 10.1080/14786435.2012.732712

Google Scholar

[38] R.M. Mazo: Bownian Motion, Fluctuations, Dynamics and Applications, Clarendon Press, Oxford, (2002) p.52 and 55, 56.

Google Scholar

[39] H. Cook H, D. de Fontaine D, J.E. Hilliard A model for diffusion on cubic lattices and its application to the early stages of ordering, Acta Metall. 17 (1969) 765-773.

DOI: 10.1016/0001-6160(69)90083-2

Google Scholar

[40] Z. Erdélyi, D.L. Beke, P. Nemes, G.A. Langer, On the range of validity of the continuum approach for non-linear diffusional mixing of multilayers. Phil. Mag. A 79, (1999) 1757-1768.

DOI: 10.1080/01418619908210390

Google Scholar

[41] G. Martin, Atomic mobility in Cahn's diffusion model, Phys Rev. B Vol. 41 (1990), 2279-2283.

Google Scholar

[42] Z. Erdélyi and D. L. Beke, Phys. Stress effects on the kinetics of nanoscale diffusion processes, Rev. B 70 (2004) 245428-1-6.

Google Scholar

[43] C. Cserhati, H, Bakker, D.L. Beke, Kinetics of surface segregation in alloys, Surface Science 290 (1993) 345-361.

DOI: 10.1016/0039-6028(93)90718-y

Google Scholar

[44] D.L. Beke, Z. Erdélyi, On the Validity of the Einstein's Relation and the Fick I Law on the Nanoscale, Diffusion Fundamentals 2 (2005) 43. 1 - 43. 16.

Google Scholar

[45] D.L. Beke, Z. Erdélyi, I.A. Szabó, C. Cserháti, Nanoscale effects in diffusion, in Nanodiffusion, (Ed. D.L. Beke) special issue of Journal of Metastable and Nanocrystalline Materials, Vol. 19 (2004), pp.107-128.

DOI: 10.4028/www.scientific.net/jmnm.19.107

Google Scholar

[46] A.L. Greer and F. Speaphen, Synthetic Modulated Structures, (Eds. L.L. Chang and B.C. Giessen) Academic Press, New York (1985) p.419.

Google Scholar

[47] H. Yamahuchi, J.E. Hilliard, A comment on Cahn's diffusion equation, Scripta Met. Vol. 6 (1972) 909-914.

Google Scholar

[48] M. Hillert, A solid-solution model for inhomogeneous systems, Acta Metall. 9 (1961) 525-535.

Google Scholar

[49] M. Hillert, The discrete lattice model for diffusion revisited, Scripta Mater. 44 (2001) 1095-1097.

DOI: 10.1016/s1359-6462(01)00654-6

Google Scholar

[50] J. W. Cahn, Modelling the evolution of structure in unstable solid solution phases by diffusional mechanisms, Scand. J. Metall. 20 (1991) 9-17.

Google Scholar

[51] A. Saul, B. Legrand, G. Treglia, Link between the surface wetting in Cu(Ag) and the layer-by-layer dissolution mode of a thick Ag deposit on a Cu substrate, Surf. Sci. Vol. 331-333 (1995) 805-810.

DOI: 10.1016/0039-6028(95)00343-6

Google Scholar

[52] S. Delage, B. Legrand, F. Soisson, A. Saul, Dissolution modes of Fe/Cu and Cu/Fe deposits, Phys. Rev. B Vol. 58, (1998) 15810-15820.

DOI: 10.1103/physrevb.58.15810

Google Scholar

[53] J. M. Roussel, A Saul, G. Treglia, B. Legrand, Layer-by-layer versus surfactant dissolution modes in heteroepitaxy, Phys. Rev. B Vol. 60, (1999), 13890-1390.

DOI: 10.1103/physrevb.60.13890

Google Scholar

[54] Z. Balogh, P. Stender, M.R. Chellali, G. Schmitz, Investigation of interfaces by atom probe tomography. Metall. Mater. Trans. A, 44 (2013) 4487-4495.

DOI: 10.1007/s11661-012-1517-6

Google Scholar

[55] Z. Balogh, MR Chellali, GH Greiwe, G. Schmitz, Z. Erdelyi, Interface sharpening in miscible Ni/Cu multilayers studied by atom probe tomography, Appl. Phys. Lett. 99: (18) (2011) 181902.

DOI: 10.1063/1.3658390

Google Scholar

[56] Y. Iguchi, Z. Erdélyi, G.A. Langer, E. Magome, K. Sumitani, A. Csik, D.L. Beke, T. Mashimo, Phyl. Mag. Lett. 93 (2013) 697-702.

DOI: 10.1080/09500839.2013.850545

Google Scholar

[57] P. Maugis, G. Martin, Interface transfer coefficient in second-phase-growth models, Phys. Rev. B Vol. 49 (1994) 11580-11587.

DOI: 10.1103/physrevb.49.11580

Google Scholar

[58] C. Cserháti, Z. Balogh, Gy. Glodán, A. Csik, G.A. Langer, Z. Erdélyi, G.L. Katona, D.L. Beke, I. Zizak, N. Darowski, E. Dudzik, R. Feyerherm: J. of Appl. Phys. 104, (2008) 024311/1-6.

DOI: 10.1063/1.2957071

Google Scholar

[59] B. Parditka, M. Verezhak, Z. Balogh, A. Csik, G.A. Langer, D.L. Beke, M. Ibrahim, G. Schmitz, Z. Erdélyi, Acta Materialia 61 (2013) 7173.

DOI: 10.1016/j.actamat.2013.08.021

Google Scholar

[60] Z. Balogh, Z. Erdélyi, D.L. Beke, G. A. Langer, A. Csik, H-G. Boyen, U. Wiedwald, P. Ziemann, A. Portavoce, Ch. Girardeaux, Transition from anomalous kinetics toward Fickian diffusion for Si dissolution into amorphous Ge, Appl. Phys. Lett. Vol. 92 (2008).

DOI: 10.1063/1.2908220

Google Scholar

[61] S.M. Prokes: PhD Thesis (Harward University) 1986 p.113.

Google Scholar

[62] C.A. Mackleit, Diffusion of Iron, Cobalt, and Nickel in Single Crystals of Pure Copper, Phys. Rev. Vol. 109 (1958), 1964-(1970).

DOI: 10.1103/physrev.109.1964

Google Scholar

[63] G.L. Katona, Z. Erdélyi, D.L. Beke, Linear-parabolic shift of initially sharp interface in AB diffusion couple above the ordering temperature, Phil. Mag. 92 (2013), 478-486.

DOI: 10.1080/09500839.2012.687837

Google Scholar

[64] A. Portavoce, G. Treglia, Theoretical investigation of the influence of reaction and diffusion kinetics upon thin-film reactive diffusion, Phys. Rev. B85 (2012) 224101/1-12.

DOI: 10.1103/physrevb.85.224101

Google Scholar

[65] A. Portavoce, G. Treglia, Physical origin of thickness-controlled sequential phase formation during reactive diffusion: Atomistic modelling, Phys. Rev. B82 (2010) 25431/1-12.

DOI: 10.1103/physrevb.82.205431

Google Scholar

[66] Z. Erdélyi, Z. Balogh, D.L. Beke, Kinetic critical radius in nucleation and growth processes – Trapping effect, Acta Mater, 58 (2010) 5639-5645.

DOI: 10.1016/j.actamat.2010.06.037

Google Scholar

[67] M. Hillert, G.R. Purdy, Chemically induced grain boundary migration, Acta Met. 26 (1978) 333-340.

DOI: 10.1016/0001-6160(78)90132-3

Google Scholar

[68] R.D. Doherty, Grain Boundary Motion, Diffusion-Induced, in Encyclopedia of materials science and engineering. Suplementry Vol. 3. (ed. R.W. Cahn), Pergamon Press, 1993, pp.1695-1698.

Google Scholar

[69] K.N. Tu, Kinetics of thin‐film reactions between Pb and the AgPd alloy, J. Appl. Phys. 48 (1977) 3400-3404.

DOI: 10.1063/1.324182

Google Scholar

[70] Li Chongmo, M. Hillert, A metallographic study of diffusion-induced grain boundary migration in the Fe-Zn system, Acta Met. 29 (1981) 1949-(1960).

DOI: 10.1016/0001-6160(81)90032-8

Google Scholar

[71] M. Hillert, On the driving force for diffusion induced grain boundary migration, Scripta Met. 17 (1983) 237-240.

DOI: 10.1016/0036-9748(83)90105-9

Google Scholar

[72] R.W. Balluffi, J.W. Cahn, Mechanism for diffuison induced grain boundary migration, Acta Met. 29 (1981) 493-500.

DOI: 10.1016/0001-6160(81)90073-0

Google Scholar

[73] O. Penrose, On the elastic driving force in diffusion-induced grain boundary motion, Acta Mater. 52 (2004), 3901-3910.

DOI: 10.1016/j.actamat.2004.05.004

Google Scholar

[74] Ya. Ye. Geguzin, Yu.S. Kaganovskiy, L.N. Paritskaya, Cold homogenization during interdiffusion in dispersed media, Phys. Met. Metall. 54 (1982) 120-130.

Google Scholar

[75] Yu. Kaganovskii, L. N. Paritskaya, Diffusion in nanomaterials, in Encyclopedia of Nanoscience and Nanotechnology (ed. H.S. Nalwa) 2004, pp.1-28.

Google Scholar

[76] G. Schmitz, D. Baither, M. Kasprzak, T.H. Kim, B. Kruse, The hidden link between diffusion-induced recrystallization and ideal strength of metals, Sripta Mater., 63 (2010) 484-487.

DOI: 10.1016/j.scriptamat.2010.05.011

Google Scholar

[77] C. Y. Ma, E. Rabkin, W. Gust, S, E. Hsu, On the kinetic behaviour and driving force of diffusion induced grain boundary migration, Acta metall, mater. 43 (1995) 3113-3124.

DOI: 10.1016/0956-7151(95)00011-j

Google Scholar

[78] S. Inomata, M.O.M. Kajihara, Diffusion-induced recrystallization in the Cu(Pd) system at complete solid-solution temperatures, J. Mater. Sci. 46 (2011) 2410-2421.

DOI: 10.1007/s10853-010-5087-y

Google Scholar

[79] F. Hartung, G. Schmitz, Interdiffusion and reaction of metals: The influence and relaxation of mismatch-induced stress, Phys. Rev. B 64 (2001) 245418-1-13.

DOI: 10.1103/physrevb.64.245418

Google Scholar

[80] D. Baiter, T.H. Kim,G. Schmitz, Diffusion-induced recrystallization in silver–palladium layers, Scripta Mater. 58 (2008) 99-102.

DOI: 10.1016/j.scriptamat.2007.09.030

Google Scholar

[81] M. Kajihara, Chemical driving force for diffusion-induced recrystallization or diffusion-induced grain boundary migration in a binary system consisting of nonvolatile elements, Scripta Mater. 54 (2006) 1767-1772.

DOI: 10.1016/j.scriptamat.2006.01.035

Google Scholar

[82] J. Sheng, U. Welzer, E.J. Mittemeijer, Interdiffusion and stress development in Ni-Cu thin film diffusion couples, Z. Kristallogr. Suppl. 30 (2009) 247-252.

DOI: 10.1524/zksu.2009.0036

Google Scholar

[83] M. Kasprzak, D. Baither, G. Schmitz, Diffusion induced recrystallization in nickel/palladium multilayers, Acta Mater., 59 (2011) 1734-1741.

DOI: 10.1016/j.actamat.2010.11.040

Google Scholar

[84] T. Takenaka, M. Kajihara, Fast Penetration of Sn into Ag by Diffusion Induced Recrystallization, Mater. Trans. 47 (2006) 822-828.

DOI: 10.2320/matertrans.47.822

Google Scholar

[85] J. Chakraborty, U. Welzer, E.J. Mittemeijer, Interdiffusion, phase formation, and stress development in Cu–Pd thin-film diffusion couples: Interface thermodynamics and mechanisms, J. Appl. Phys. 103 (2008) 113512-1-15.

DOI: 10.1063/1.2938079

Google Scholar

[86] V.M. Koshevich, A.N. Gladkikh, M.V. Karpovskyi, V.N. Klimenko, Interdiffusion in Two-Layer Pd/Ag Films II. Cold, Homogenization Mechanisms, Interface Sci. 2 (1994) 261-270.

DOI: 10.1007/bf00215172

Google Scholar

[87] L.N. Paritskaya, Yu. Kaganovskii, V.V. Bogdanov, Size-dependent interdiffusion in nanomaterials, Solid State Phenom. 101–102 (2005) 123-130.

Google Scholar

[88] A. Lakatos, G. Erdelyi, A. Makovec, G.A. Langer, A. Csik, K. Vad, D.L. Beke, Investigation of diffusional intermixing in Si/Co/Ta system by Secondary Neutral Mass Spectrometry, Vacuum 86 (2012) 724-728.

DOI: 10.1016/j.vacuum.2011.07.017

Google Scholar

[89] G. Molnár, G. Erdélyi, G A. Langer, D.L. Beke, A. Csik, G.L. Katona, L. Daróczi, M. Kis-Varga, A. Dudás, Evolution of concentration profiles in Pd/Cu systems studied by SNMS technique, Vacuum, 98 (2013) 70-74.

DOI: 10.1016/j.vacuum.2013.04.015

Google Scholar

[90] - G.L. Katona, I. Vladimirsky, I.M. Makogon, S. I Sidorenko, L. Daroczi. A. Csik, G. Beddies, M. Albrecht, D.L. Beke, Grain boundary diffusion induced reaction layer formation in Fe/Pt thin films, Applied Physics A: Materials Science and Processing, 115 (2013).

DOI: 10.1007/s00339-013-7949-z

Google Scholar

[91] S.S. Shenouda, G.A. Langer, G.L. Katona, S. Kéki, M. Zsuga, D.L. Beke, Hungarian Patent, Registration no: P1300672/(2013).

Google Scholar

[92] D.L. Beke, I. Gődény, G. Eredélyi, F.J. Kedves, Temperature dependence of grain-boundary diffusion of 65Zn in polycrystalline aluminium, Phil. Mag. A 56 (1987) 659-671.

DOI: 10.1080/01418618708204479

Google Scholar

[93] B. Bokstein, V. Ivanov, O. Oreshina, A. Peteline, S. Peteline, Direct experimental observation of accelerated Zn diffusion along triple junctions in A1, Mater. Sci. Eng. A 302 (2001) 151-153.

DOI: 10.1016/s0921-5093(00)01367-8

Google Scholar

[94] A. Lakatos, G. Erdelyi, G.A. Langer, L. Daroczi, K. Vad, A. Csik, A. Dudas, D.L. Beke, Investigations of diffusion kinetics in Si/Ta/Cu/W and Si/Co/Ta systems by secondary neutral mass spectrometry, Vacuum 84 (2010) 953-957.

DOI: 10.1016/j.vacuum.2010.01.019

Google Scholar

[95] A. Lakatos, A. Csik, G.A. Langer, G. Erdelyi, G.L. Katona, L. Daroczi, K. Vad, J. Toth, D.L. Beke, Investigations of failure mechanisms at Ta and TaO diffusion barriers by secondary neutral mass spectrometry, Vacuum 84 (2010) 130-134.

DOI: 10.1016/j.vacuum.2009.06.007

Google Scholar

[96] A. Makovecz, G. Erdelyi, D.L. Beke, Grain boundary diffusion in thin films with a bimodal grain boundary structure, Thin Solid Film 520 (2012) 2362-2367.

DOI: 10.1016/j.tsf.2011.11.013

Google Scholar

[97] D. L Beke, A. Lakatos, G. Erdelyi, A. Makovecz, G.A. Langer, L. Daroczi, K. Vad, A. Csik, Investigation of grain boundary diffusion in thin films by SNMS technique, Defect Diffusion Forum 312–315 (2012) 1208-1215.

DOI: 10.4028/www.scientific.net/ddf.312-315.1208

Google Scholar

[98] A. Lakatos, G.A. Langer, A. Csik, C. Cserhati, M. Kis-Varga, L. Daroczi, G.L. Katona, Z. Erdelyi, G. Erdelyi, K. Vad, D.L. Beke, Appl. Phys. Lett. 97 (2010) 233103.

DOI: 10.1063/1.3524491

Google Scholar

[99] J. Chakraborty, U. Welzer, E.J. Mittemeijer, Mechnism of interdiffuison in Pd-Cu thin film couples, Thin Solid Film 518 (2010) 2010-(2020).

DOI: 10.1016/j.tsf.2009.08.026

Google Scholar

[100] N. Jadhav, E.J. Buchovecky, L. Reinbold, S. Kumar, A.F. Bower, E. Chason, Understanding the Correlation Between Intermetallic Growth, Stress Evolution, and Sn Whisker Nucleation, IEEE Trans. Electron. Packag. Manuf. 33 (2010) 183-192.

DOI: 10.1109/tepm.2010.2043847

Google Scholar

[101] Y. Yamamoto, S. Uemura, K. Yoshida, M. Kajihara, Kinetic features of diffusion induced recrystallization in the Cu(Ni) system at 873 K, Mat. Sci. Eng. A 303 (2002) 262-269.

DOI: 10.1016/s0921-5093(01)01847-0

Google Scholar

[102] J. D. Pan, R. W. Balluffi, Diffusion induced grain boundary migration in Au/Cu and Au/Ag thin films, Acta Met. 30 (1982) 861-870.

DOI: 10.1016/0001-6160(82)90084-0

Google Scholar

[103] F.M. d'Heurle, Nucleation of a new phase from the interaction of two adjacent phases: Some silicides, J. Mater, Res. 3 (1988) 167-195.

DOI: 10.1557/jmr.1988.0167

Google Scholar

[104] J.C. Ciccariello, S. Poise, P. Gas, Lattice and grain boundary self‐diffusion in Ni2Si: Comparison with thin‐film formation, J. of Appl. Phys. 67 (1990) 3315-3322.

DOI: 10.1063/1.345367

Google Scholar

[105] K. Hoummada, D. Mangerinck, A. Portavoce, Kinetic of formation of Ni and Pd silicides: determination of interfacial mobility and interdiffusion coefficients by in-situ techniques, Solid State Phenom. 172-174 (2011) 640-645.

DOI: 10.4028/www.scientific.net/ssp.172-174.640

Google Scholar

[106] K.N. Tu, B.S. Berry, X‐ray study of interdiffusion in bimetallic Cu/Au films, J. Appl. Phys. 43 (1972) 3283-3290.

DOI: 10.1063/1.1661708

Google Scholar

[107] J.A. Borders, Ion back-scattering analysis of interdiffusion in Cu-Au thin films, Thin Solid Films, 19 (1973) 359-370.

DOI: 10.1016/0040-6090(73)90072-2

Google Scholar