[1]
J.P. Gambino, E.G. Colgan, Silicides and ohmic contacts, Mater. Chem. Phys. 52 (1998) 99–146.
DOI: 10.1016/s0254-0584(98)80014-x
Google Scholar
[2]
S.L. Zhang, M. Ostling, Metal silicides in CMOS technology: Past, present, and future trends, Crit. Rev. Solid State Mater. Sci. 28 (2003) 1–129.
DOI: 10.1080/10408430390802431
Google Scholar
[3]
C. Lavoie, F.M. d'Heurle, C. Detavernier, C. Cabral Jr., Towards implementation of a nickel silicide process for CMOS technologies, Microelectron. Eng. 70 (2003) 144–157.
DOI: 10.1016/s0167-9317(03)00380-0
Google Scholar
[4]
D. Mangelinck, J.Y. Dai, J.S. Pan, S.K. Lahiri, Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition, Appl. Phys. Lett. 75 (1999) 1736–1738.
DOI: 10.1063/1.124803
Google Scholar
[5]
P.S. Lee, K.L. Pey, D. Mangelinck, J. Ding, D.Z. Chi, L. Chan, New salicidation technology with Ni(Pt) alloy for MOSFETs, Ieee Electron Device Lett. 22 (2001) 568–570.
DOI: 10.1109/55.974579
Google Scholar
[6]
F.M. d'Heurle, P. Gas, Kinetics of formation of silicides: A review, J. Mater. Res. 1 (1986) 205–221.
Google Scholar
[7]
R. Tung, J. Poate, J. Bean, J. Gibson, D. Jacobson, Epitaxial Silicides, Thin Solid Films. 93 (1982) 77–90.
DOI: 10.1016/0040-6090(82)90093-1
Google Scholar
[8]
M.-A. Nicolet, S.S. Lau, Chapter 6 - Formation and Characterization of Transition-Metal Silicides, in: N.G. Einspruch, G.B. Larrabee (Eds.), VLSI Electron. Microstruct. Sci., Elsevier, 1983: p.329–464.
DOI: 10.1016/b978-0-12-234106-9.50011-8
Google Scholar
[9]
F.M. d'Heurle, O. Thomas, Stresses during Silicide Formation: A Review, Defect Diffus. Forum. 129–130 (1996) 137–150.
DOI: 10.4028/www.scientific.net/ddf.129-130.137
Google Scholar
[10]
F. Nava, K.N. Tu, O. Thomas, J.P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, O. Bisi, Electrical and optical properties of silicide single crystals and thin films, Mater. Sci. Rep. 9 (1993) 141–200.
DOI: 10.1016/0920-2307(93)90007-2
Google Scholar
[11]
F.M. d'Heurle, Nucleation of a new phase from the interaction of two adjacent phases: Some silicides, J. Mater. Res. 3 (1988) 167–195.
DOI: 10.1557/jmr.1988.0167
Google Scholar
[12]
K. Coffey, L. Clevenger, K. Barmak, D. Rudman, C. Thompson, Experimental-Evidence for Nucleation During Thin-Film Reactions, Appl. Phys. Lett. 55 (1989) 852–854.
DOI: 10.1063/1.102447
Google Scholar
[13]
P. Gergaud, O. Thomas, B. Chenevier, Stresses arising from a solid state reaction between palladium films and Si(001) investigated by in situ combined x-ray diffraction and curvature measurements, J. Appl. Phys. 94 (2003) 1584–1591.
DOI: 10.1063/1.1590059
Google Scholar
[14]
C. Rivero, P. Gergaud, M. Gailhanou, O. Thomas, B. Froment, H. Jaouen, V. Carron, Combined synchrotron x-ray diffraction and wafer curvature measurements during Ni-Si reactive film formation, Appl. Phys. Lett. 87 (2005) 041904.
DOI: 10.1063/1.1999021
Google Scholar
[15]
D. Mangelinck, K. Hoummada, Effect of stress on the transformation of Ni2Si into NiSi, Appl. Phys. Lett. 92 (2008) 254101.
DOI: 10.1063/1.2949751
Google Scholar
[16]
C. Detavernier, A.S. Ozcan, J. Jordan-Sweet, E.A. Stach, J. Tersoff, F.M. Ross, C. Lavoie, An off-normal fibre-like texture in thin films on single-crystal substrates, Nature. 426 (2003) 641–645.
DOI: 10.1038/nature02198
Google Scholar
[17]
D. Mangelinck, K. Hoummada, I. Blum, Kinetics of a transient silicide during the reaction of Ni thin film with (100)Si, Appl. Phys. Lett. 95 (2009) 181902.
DOI: 10.1063/1.3257732
Google Scholar
[18]
Z. Zhang, S.-L. Zhang, B. Yang, Y. Zhu, S.M. Rossnagel, S. Gaudet, A.J. Kellock, J. Jordan-Sweet, C. Lavoie, Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1-xPtx on Si substrate, Appl. Phys. Lett. 96 (2010) 071915.
DOI: 10.1063/1.3323097
Google Scholar
[19]
J. Lu, J. Luo, S.-L. Zhang, M. Ostling, L. Hultman, On Epitaxy of Ultrathin Ni1-xPtx Silicide Films on Si(001), Electrochem. Solid State Lett. 13 (2010) H360–H362.
DOI: 10.1149/1.3473723
Google Scholar
[20]
K. De Keyser, C. Van Bockstael, R.L. Van Meirhaeghe, C. Detavernier, E. Verleysen, H. Bender, W. Vandervorst, J. Jordan-Sweet, C. Lavoie, Phase formation and thermal stability of ultrathin nickel-silicides on Si(100), Appl. Phys. Lett. 96 (2010) 173503.
DOI: 10.1063/1.3384997
Google Scholar
[21]
P. Gas, F.M. D'Heurle, Diffusion in Silicide, in: Diffus. Semicond. Non-Met. Solids, Ed. D.L. Beke, Springer Verlag, Berlin, (1998).
Google Scholar
[22]
T. Barge, Formation de siliciures par réaction métal-silicium: role de la diffusion, (1993).
Google Scholar
[23]
T. Barge, P. Gas, F.M. d'Heurle, Analysis of the diffusion controlled growth of cobalt silicides in bulk and thin film couples, J. Mater. Res. 10 (1995) 1134–1145.
DOI: 10.1557/jmr.1995.1134
Google Scholar
[24]
W.K. Chu, J.W. Mayer, M.-A. Nicolet, Backscattering Spectrometry, Academic Press, New York, (1978).
Google Scholar
[25]
S.-L. Zhang, F.M. d'Heurle, Precisions on reaction monitoring from in-situ resistance measurements: relations between such measurements and actual reaction kinetics, Thin Solid Films. 279 (1996) 248–252.
DOI: 10.1016/0040-6090(95)08192-5
Google Scholar
[26]
C. Michaelsen, K. Barmak, T.P. Weihs, Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry, J. Phys. -Appl. Phys. 30 (1997) 3167–3186.
DOI: 10.1088/0022-3727/30/23/001
Google Scholar
[27]
F. Nemouchi, D. Mangelinck, C. Bergman, P. Gas, U. Smith, Differential scanning calorimetry analysis of the linear parabolic growth of nanometric Ni silicide thin films on a Si substrate, Appl. Phys. Lett. 86 (2005) 041903.
DOI: 10.1063/1.1852727
Google Scholar
[28]
M. Putero, L. Ehouarne, E. Ziegler, D. Mangelinck, First silicide formed by reaction of Ni(13%Pt) films with Si(1 0 0): Nature and kinetics by in-situ X-ray reflectivity and diffraction, Scr. Mater. 63 (2010) 24–27.
DOI: 10.1016/j.scriptamat.2010.02.040
Google Scholar
[29]
H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem. 29 (1957) 1702.
Google Scholar
[30]
S.-L. Zhang, F.M. d'Heurle, Kinetic studies of intermetallic compound formation by resistance measurements, Thin Solid Films. 256 (1995) 155–164.
DOI: 10.1016/0040-6090(94)06288-9
Google Scholar
[31]
H. Bakker, Self Diffusion in Homogeneous Binary Alloys and Intermediate Phases., Springer, Berlin, (1990).
Google Scholar
[32]
H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Science & Business Media, (2007).
Google Scholar
[33]
P. Gas, Diffusion mechanism in bulk silicides: Relation with thin film behaviour (case of Ni2Si formation), Appl. Surf. Sci. 38 (1989) 178–184.
DOI: 10.1016/0169-4332(89)90534-5
Google Scholar
[34]
P. Gas, F.M. d'Heurle, Formation of silicide thin films by solid state reaction, Appl. Surf. Sci. 73 (1993) 153–161.
Google Scholar
[35]
D.S. Wen, P.L. Smith, C.M. Osburn, G.A. Rozgonyi, Defect annihilation in shallow p+ junctions using titanium silicide, Appl. Phys. Lett. 51 (1987) 1182.
DOI: 10.1063/1.98726
Google Scholar
[36]
N. Stolwijk, H. Bracht, H.-G. Hettwer, W. Lerch, H. Mehrer, A. Rucki, W. Jäger, Defect Injection and Diffusion in Semiconductors, Mater. Sci. Forum. 155–156 (1994) 475–492.
DOI: 10.4028/www.scientific.net/msf.155-156.475
Google Scholar
[37]
W.K. Chu, S.S. Lau, J.W. Mayer, H. Müller, K.N. Tu, Implanted noble gas atoms as diffusion markers in silicide formation, Thin Solid Films. 25 (1975) 393–402.
DOI: 10.1016/0040-6090(75)90057-7
Google Scholar
[38]
J.O. Olowolafe, M.-A. Nicolet, J.W. Mayer, Influence of the nature of the Si substrate on nickel silicide formed from thin Ni films, Thin Solid Films. 38 (1976) 143–150.
DOI: 10.1016/0040-6090(76)90221-2
Google Scholar
[39]
T.B. Massalski, H. Okamoto, ASM International, Binary alloy phase diagrams, ASM International, Materials Park, Ohio, (1990).
Google Scholar
[40]
L. Clevenger, C. Thompson, R. Cammarata, K. Tu, Reaction-Kinetics of Nickel Silicon Multilayer Films, Appl. Phys. Lett. 52 (1988) 795–797.
DOI: 10.1063/1.99644
Google Scholar
[41]
L. Clevenger, C. Thompson, Nucleation-Limited Phase Selection During Reactions in Nickel Amorphous-Silicon Multilayer Thin-Films, J. Appl. Phys. 67 (1990) 1325–1333.
DOI: 10.1063/1.345685
Google Scholar
[42]
C. Lavoie, C. Coia, F.M. d'Heurle, C. Detavernier, C. Cabral, P. Desjardins, A.J. Kellock, Reactive diffusion in the Ni-Si system: phase sequence and formation of metal-rich phases, in: M. Danielewski, R. Filipek, R. Kozubs, W. Kucza, P. Zieba, Z. Zurek (Eds.), Diffus. Mater. Dimat 2004 Pts 1 2, 2005: p.825–836.
DOI: 10.4028/www.scientific.net/ddf.237-240.825
Google Scholar
[43]
S. Gaudet, C. Coia, P. Desjardins, C. Lavoie, Metastable phase formation during the reaction of Ni films with Si(001): The role of texture inheritance, J. Appl. Phys. 107 (2010) 093515.
DOI: 10.1063/1.3327451
Google Scholar
[44]
C. Coia, Metastable compound formation during thin-film solid state reaction in the Ni-Si system: microstructure and growth kinetics, (2008).
Google Scholar
[45]
P.J. Grunthaner, Metal/silicon interface formation: The Ni/Si and Pd/Si systems, J. Vac. Sci. Technol. 19 (1981) 649.
DOI: 10.1116/1.571079
Google Scholar
[46]
F. d'Heurle, C.S. Petersson, J.E.E. Baglin, S.J. La Placa, C.Y. Wong, Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds, J. Appl. Phys. 55 (1984) 4208.
DOI: 10.1063/1.333021
Google Scholar
[47]
C. Detavernier, C. Lavoie, Influence of Pt addition on the texture of NiSi on Si(001), Appl. Phys. Lett. 84 (2004) 3549.
DOI: 10.1063/1.1719276
Google Scholar
[48]
F. Panciera, D. Mangelinck, K. Hoummada, M. Texier, M. Bertoglio, A. De Luca, M. Gregoire, M. Juhel, Direct epitaxial growth of θ-Ni2Si by reaction of a thin Ni(10 at.% Pt) film with Si(1 0 0) substrate, Scr. Mater. 78–79 (2014) 9–12.
DOI: 10.1016/j.scriptamat.2014.01.010
Google Scholar
[49]
F. Panciera, La sonde atomique tomographique : applications aux dispositifs CMOS avancés sub-45nm, (2012).
Google Scholar
[50]
M. El Kousseifi, K. Hoummada, M. Bertoglio, D. Mangelinck, Selection of the first Ni silicide phase by controlling the Pt incorporation in the intermixed layer, Acta Mater. 106 (2016) 193–198.
DOI: 10.1016/j.actamat.2016.01.004
Google Scholar
[51]
W.H. Wang, H.Y. Bai, Y. Zhang, W.K. Wang, Phase selection in interfacial reaction of Ni/amorphous Si multilayers, J. Appl. Phys. 73 (1993) 4313–4318.
DOI: 10.1063/1.352814
Google Scholar
[52]
F.M. d'Heurle, P. Gas, Kinetics of formation of silicides: A review, J. Mater. Res. 1 (1986) 205–221.
Google Scholar
[53]
K. Hoummada, D. Mangelinck, A. Portavoce, Kinetic of Formation of Ni and Pd Silicides: Determination of Interfacial Mobility and Interdiffusion Coefficient by <i>In Situ</i> Techniques, Solid State Phenom. 172–174 (2011) 640–645.
DOI: 10.4028/www.scientific.net/ssp.172-174.640
Google Scholar
[54]
K. Hoummada, A. Portavoce, C. Perrin-Pellegrino, D. Mangelinck, C. Bergman, Differential scanning calorimetry measurements of kinetic factors involved in salicide process, Appl. Phys. Lett. 92 (2008) 133109.
DOI: 10.1063/1.2905293
Google Scholar
[55]
K. Coffey, K. Barmak, D. Rudman, S. Foner, Thin-Film Reaction-Kinetics of Niobium Aluminum Multilayers, J. Appl. Phys. 72 (1992) 1341–1349.
DOI: 10.1063/1.351744
Google Scholar
[56]
G. Lucadamo, K. Barmak, S. Hyun, C. Cabral Jr., C. Lavoie, Evidence of a two-stage reaction mechanism in sputter deposited Nb/Al multilayer thin-films studied by in situ synchrotron X-ray diffraction, Mater. Lett. 39 (1999) 268–273.
DOI: 10.1016/s0167-577x(99)00017-8
Google Scholar
[57]
C. Bergman, J.L. Joulaud, M. Capitan, G. Clugnet, P. Gas, In situ real-time analysis of the formation of a quasicrystalline phase in Al-Co multilayers by solid-state reaction, J. Non-Cryst. Solids. 287 (2001) 193–196.
DOI: 10.1016/s0022-3093(01)00558-0
Google Scholar
[58]
R. Delattre, O. Thomas, C. Perrin-Pellegrino, C. Rivero, R. Simola, First stage of CoSi2 formation during a solid-state reaction, J. Appl. Phys. 116 (2014) 245301.
DOI: 10.1063/1.4904852
Google Scholar
[59]
V. Vovk, G. Schmitz, R. Kirchheim, Nucleation of product phase in reactive diffusion of Al/Co, Phys. Rev. B. 69 (2004).
DOI: 10.1103/physrevb.69.104102
Google Scholar
[60]
K. Hoummada, E. Cadel, D. Mangelinck, C. Perrin-Pellegrino, D. Blavette, B. Deconihout, First stages of the formation of Ni silicide by atom probe tomography, Appl. Phys. Lett. 89 (2006) 181905.
DOI: 10.1063/1.2370501
Google Scholar
[61]
L. Klinger, Y. Bréchet, G. Purdy, On the kinetics of interface-diffusion-controlled peritectoid reactions, Acta Mater. 46 (1998) 2617–2621.
DOI: 10.1016/s1359-6454(97)00471-0
Google Scholar
[62]
G. Lucenko, A. Gusak, A model of the growth of intermediate phase islands in multilayers, Microelectron. Eng. 70 (2003) 529–532.
DOI: 10.1016/s0167-9317(03)00432-5
Google Scholar
[63]
M. Pasichnyy, A. Gusak, Model of Lateral Growth Stage during Reactive Phase Formation, Defect Diffus. Forum. 277 (2008) 47–52.
DOI: 10.4028/www.scientific.net/ddf.277.47
Google Scholar
[64]
F.R. de Boer, A.R. Niessen, A.R. Miedema, W.C.M. Mattens, R. Boom, Cohesion in Metals, Elsevier Science Ltd, Amsterdam, (1988).
Google Scholar
[65]
E. Ma, L. Clevenger, C. Thompson, Nucleation of an Intermetallic at Thin-Film Interfaces - Vsi2 Contrasted with Al3ni, J. Mater. Res. 7 (1992) 1350–1355.
DOI: 10.1557/jmr.1992.1350
Google Scholar
[66]
J.W. Christian, The Theory of Transformation Rates in Metals and Alloys, Part I, Pergamon, Oxford, (1975).
Google Scholar
[67]
M. El Kousseifi, K. Hoummada, T. Epicier, D. Mangelinck, Direct observation of NiSi lateral growth at the epitaxial θ-Ni2Si/Si(1 0 0) interface, Acta Mater. 99 (2015) 1–6.
DOI: 10.1016/j.actamat.2015.07.062
Google Scholar
[68]
D. Mangelinck, M. El Kousseifi, K. Hoummada, F. Panciera, T. Epicier, Lateral growth of NiSi at the θ-Ni2Si/Si(100) interface: Experiments and modelling, Microelectron. Eng. 199 (2018) 45–51.
DOI: 10.1016/j.mee.2018.07.014
Google Scholar
[69]
S.V. Divinski, F. Hisker, A. Bartels, C. Herzig, Interphase boundary diffusion of 44Ti in two-phase TiAl with lamellar α2/γ structure, Scr. Mater. 45 (2001) 161–167.
DOI: 10.1016/s1359-6462(01)01006-5
Google Scholar
[70]
C. Herring, Surface tension as a motivation for sintering, in: Phys. Powder Metall., McGraw-Hill Book Co., W.E. Kingston, New York, 1951: p.143.
Google Scholar
[71]
B.L. Adams, S. Ta'Asan, D. Kinderlehrer, I. Livshits, D.E. Mason, C.-T. Wu, W.W. Mullins, G.S. Rohrer, A.D. Rollett, D.M. Saylor, Extracting Grain Boundary and Surface Energy from Measurement of Triple Junction Geometry, Interface Sci. 7 (1999) 321–337.
DOI: 10.1023/a:1008733728830
Google Scholar
[72]
H.I. Aaronson, M. Enomoto, J.K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys, CRC Press, (2016).
DOI: 10.1201/b15829
Google Scholar
[73]
F. Nemouchi, Réactivité de films nanometriques de nickel sur substrats silicium-germanium, (2005).
Google Scholar
[74]
B.E. Deal, A.S. Grove, General Relationship for the Thermal Oxidation of Silicon, J. Appl. Phys. 36 (1965) 3770.
Google Scholar
[75]
F. Nemouchi, D. Mangelinck, C. Bergman, G. Clugnet, P. Gas, J.L. Lábár, Simultaneous growth of Ni5Ge3 and NiGe by reaction of Ni film with Ge, Appl. Phys. Lett. 89 (2006) 131920.
DOI: 10.1063/1.2358189
Google Scholar
[76]
F. Nemouchi, D. Mangelinck, J.L. Lábár, M. Putero, C. Bergman, P. Gas, A comparative study of nickel silicides and nickel germanides: Phase formation and kinetics, Microelectron. Eng. 83 (2006) 2101–2106.
DOI: 10.1016/j.mee.2006.09.014
Google Scholar
[77]
D. Mangelinck, Chapter 9 - The Growth of Silicides and Germanides, in: Handb. Solid State Diffus. Vol. 2, Elsevier, 2017: p.379–446.
DOI: 10.1016/b978-0-12-804548-0.00009-8
Google Scholar
[78]
D. Mangelinck, T. Luo, C. Girardeaux, Reactive diffusion in the presence of a diffusion barrier: Experiment and model, J. Appl. Phys. 123 (2018) 185301.
DOI: 10.1063/1.5023578
Google Scholar
[79]
D. Mangelinck, K. Hoummada, A. Portavoce, C. Perrin, R. Daineche, M. Descoins, D.J. Larson, P.H. Clifton, Three-dimensional composition mapping of NiSi phase distribution and Pt diffusion via grain boundaries in Ni2Si, Scr. Mater. 62 (2010) 568–571.
DOI: 10.1016/j.scriptamat.2009.12.044
Google Scholar