Mechanisms of Silicide Formation by Reactive Diffusion in Thin Films

Article Preview

Abstract:

Silicide formation by reactive diffusion is of interest in numerous applications especially for contact formation and interconnections in microelectronics. Several reviews have been published on this topic and the aim of this chapter is to provide an update of these reviews by focusing on new experiment results. This chapter presents thus some progress in the understanding of the main mechanisms (diffusion/reaction, nucleation, lateral growth…) for thin and very thin films (i.e. comprised between 4 and 50 nm). Recent experimental results on the mechanisms of formation of silicide are presented and compared to models and/or simulation in order to extract physical parameters that are relevant to reactive diffusion. These mechanisms include nucleation, lateral growth, diffusion/interface controlled growth, and the role of a diffusion barrier. The combination of several techniques including in situ techniques (XRD, XRR, XPS, DSC) and high resolution techniques (APT and TEM) is shown to be essential in order to gain understanding in the solid state reaction in thin films and to better control these reaction for making contacts in microelectronics devices or for other application.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 21)

Pages:

1-28

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Gambino, E.G. Colgan, Silicides and ohmic contacts, Mater. Chem. Phys. 52 (1998) 99–146.

DOI: 10.1016/s0254-0584(98)80014-x

Google Scholar

[2] S.L. Zhang, M. Ostling, Metal silicides in CMOS technology: Past, present, and future trends, Crit. Rev. Solid State Mater. Sci. 28 (2003) 1–129.

DOI: 10.1080/10408430390802431

Google Scholar

[3] C. Lavoie, F.M. d'Heurle, C. Detavernier, C. Cabral Jr., Towards implementation of a nickel silicide process for CMOS technologies, Microelectron. Eng. 70 (2003) 144–157.

DOI: 10.1016/s0167-9317(03)00380-0

Google Scholar

[4] D. Mangelinck, J.Y. Dai, J.S. Pan, S.K. Lahiri, Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition, Appl. Phys. Lett. 75 (1999) 1736–1738.

DOI: 10.1063/1.124803

Google Scholar

[5] P.S. Lee, K.L. Pey, D. Mangelinck, J. Ding, D.Z. Chi, L. Chan, New salicidation technology with Ni(Pt) alloy for MOSFETs, Ieee Electron Device Lett. 22 (2001) 568–570.

DOI: 10.1109/55.974579

Google Scholar

[6] F.M. d'Heurle, P. Gas, Kinetics of formation of silicides: A review, J. Mater. Res. 1 (1986) 205–221.

Google Scholar

[7] R. Tung, J. Poate, J. Bean, J. Gibson, D. Jacobson, Epitaxial Silicides, Thin Solid Films. 93 (1982) 77–90.

DOI: 10.1016/0040-6090(82)90093-1

Google Scholar

[8] M.-A. Nicolet, S.S. Lau, Chapter 6 - Formation and Characterization of Transition-Metal Silicides, in: N.G. Einspruch, G.B. Larrabee (Eds.), VLSI Electron. Microstruct. Sci., Elsevier, 1983: p.329–464.

DOI: 10.1016/b978-0-12-234106-9.50011-8

Google Scholar

[9] F.M. d'Heurle, O. Thomas, Stresses during Silicide Formation: A Review, Defect Diffus. Forum. 129–130 (1996) 137–150.

DOI: 10.4028/www.scientific.net/ddf.129-130.137

Google Scholar

[10] F. Nava, K.N. Tu, O. Thomas, J.P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, O. Bisi, Electrical and optical properties of silicide single crystals and thin films, Mater. Sci. Rep. 9 (1993) 141–200.

DOI: 10.1016/0920-2307(93)90007-2

Google Scholar

[11] F.M. d'Heurle, Nucleation of a new phase from the interaction of two adjacent phases: Some silicides, J. Mater. Res. 3 (1988) 167–195.

DOI: 10.1557/jmr.1988.0167

Google Scholar

[12] K. Coffey, L. Clevenger, K. Barmak, D. Rudman, C. Thompson, Experimental-Evidence for Nucleation During Thin-Film Reactions, Appl. Phys. Lett. 55 (1989) 852–854.

DOI: 10.1063/1.102447

Google Scholar

[13] P. Gergaud, O. Thomas, B. Chenevier, Stresses arising from a solid state reaction between palladium films and Si(001) investigated by in situ combined x-ray diffraction and curvature measurements, J. Appl. Phys. 94 (2003) 1584–1591.

DOI: 10.1063/1.1590059

Google Scholar

[14] C. Rivero, P. Gergaud, M. Gailhanou, O. Thomas, B. Froment, H. Jaouen, V. Carron, Combined synchrotron x-ray diffraction and wafer curvature measurements during Ni-Si reactive film formation, Appl. Phys. Lett. 87 (2005) 041904.

DOI: 10.1063/1.1999021

Google Scholar

[15] D. Mangelinck, K. Hoummada, Effect of stress on the transformation of Ni2Si into NiSi, Appl. Phys. Lett. 92 (2008) 254101.

DOI: 10.1063/1.2949751

Google Scholar

[16] C. Detavernier, A.S. Ozcan, J. Jordan-Sweet, E.A. Stach, J. Tersoff, F.M. Ross, C. Lavoie, An off-normal fibre-like texture in thin films on single-crystal substrates, Nature. 426 (2003) 641–645.

DOI: 10.1038/nature02198

Google Scholar

[17] D. Mangelinck, K. Hoummada, I. Blum, Kinetics of a transient silicide during the reaction of Ni thin film with (100)Si, Appl. Phys. Lett. 95 (2009) 181902.

DOI: 10.1063/1.3257732

Google Scholar

[18] Z. Zhang, S.-L. Zhang, B. Yang, Y. Zhu, S.M. Rossnagel, S. Gaudet, A.J. Kellock, J. Jordan-Sweet, C. Lavoie, Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1-xPtx on Si substrate, Appl. Phys. Lett. 96 (2010) 071915.

DOI: 10.1063/1.3323097

Google Scholar

[19] J. Lu, J. Luo, S.-L. Zhang, M. Ostling, L. Hultman, On Epitaxy of Ultrathin Ni1-xPtx Silicide Films on Si(001), Electrochem. Solid State Lett. 13 (2010) H360–H362.

DOI: 10.1149/1.3473723

Google Scholar

[20] K. De Keyser, C. Van Bockstael, R.L. Van Meirhaeghe, C. Detavernier, E. Verleysen, H. Bender, W. Vandervorst, J. Jordan-Sweet, C. Lavoie, Phase formation and thermal stability of ultrathin nickel-silicides on Si(100), Appl. Phys. Lett. 96 (2010) 173503.

DOI: 10.1063/1.3384997

Google Scholar

[21] P. Gas, F.M. D'Heurle, Diffusion in Silicide, in: Diffus. Semicond. Non-Met. Solids, Ed. D.L. Beke, Springer Verlag, Berlin, (1998).

Google Scholar

[22] T. Barge, Formation de siliciures par réaction métal-silicium: role de la diffusion, (1993).

Google Scholar

[23] T. Barge, P. Gas, F.M. d'Heurle, Analysis of the diffusion controlled growth of cobalt silicides in bulk and thin film couples, J. Mater. Res. 10 (1995) 1134–1145.

DOI: 10.1557/jmr.1995.1134

Google Scholar

[24] W.K. Chu, J.W. Mayer, M.-A. Nicolet, Backscattering Spectrometry, Academic Press, New York, (1978).

Google Scholar

[25] S.-L. Zhang, F.M. d'Heurle, Precisions on reaction monitoring from in-situ resistance measurements: relations between such measurements and actual reaction kinetics, Thin Solid Films. 279 (1996) 248–252.

DOI: 10.1016/0040-6090(95)08192-5

Google Scholar

[26] C. Michaelsen, K. Barmak, T.P. Weihs, Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry, J. Phys. -Appl. Phys. 30 (1997) 3167–3186.

DOI: 10.1088/0022-3727/30/23/001

Google Scholar

[27] F. Nemouchi, D. Mangelinck, C. Bergman, P. Gas, U. Smith, Differential scanning calorimetry analysis of the linear parabolic growth of nanometric Ni silicide thin films on a Si substrate, Appl. Phys. Lett. 86 (2005) 041903.

DOI: 10.1063/1.1852727

Google Scholar

[28] M. Putero, L. Ehouarne, E. Ziegler, D. Mangelinck, First silicide formed by reaction of Ni(13%Pt) films with Si(1 0 0): Nature and kinetics by in-situ X-ray reflectivity and diffraction, Scr. Mater. 63 (2010) 24–27.

DOI: 10.1016/j.scriptamat.2010.02.040

Google Scholar

[29] H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem. 29 (1957) 1702.

Google Scholar

[30] S.-L. Zhang, F.M. d'Heurle, Kinetic studies of intermetallic compound formation by resistance measurements, Thin Solid Films. 256 (1995) 155–164.

DOI: 10.1016/0040-6090(94)06288-9

Google Scholar

[31] H. Bakker, Self Diffusion in Homogeneous Binary Alloys and Intermediate Phases., Springer, Berlin, (1990).

Google Scholar

[32] H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Science & Business Media, (2007).

Google Scholar

[33] P. Gas, Diffusion mechanism in bulk silicides: Relation with thin film behaviour (case of Ni2Si formation), Appl. Surf. Sci. 38 (1989) 178–184.

DOI: 10.1016/0169-4332(89)90534-5

Google Scholar

[34] P. Gas, F.M. d'Heurle, Formation of silicide thin films by solid state reaction, Appl. Surf. Sci. 73 (1993) 153–161.

Google Scholar

[35] D.S. Wen, P.L. Smith, C.M. Osburn, G.A. Rozgonyi, Defect annihilation in shallow p+ junctions using titanium silicide, Appl. Phys. Lett. 51 (1987) 1182.

DOI: 10.1063/1.98726

Google Scholar

[36] N. Stolwijk, H. Bracht, H.-G. Hettwer, W. Lerch, H. Mehrer, A. Rucki, W. Jäger, Defect Injection and Diffusion in Semiconductors, Mater. Sci. Forum. 155–156 (1994) 475–492.

DOI: 10.4028/www.scientific.net/msf.155-156.475

Google Scholar

[37] W.K. Chu, S.S. Lau, J.W. Mayer, H. Müller, K.N. Tu, Implanted noble gas atoms as diffusion markers in silicide formation, Thin Solid Films. 25 (1975) 393–402.

DOI: 10.1016/0040-6090(75)90057-7

Google Scholar

[38] J.O. Olowolafe, M.-A. Nicolet, J.W. Mayer, Influence of the nature of the Si substrate on nickel silicide formed from thin Ni films, Thin Solid Films. 38 (1976) 143–150.

DOI: 10.1016/0040-6090(76)90221-2

Google Scholar

[39] T.B. Massalski, H. Okamoto, ASM International, Binary alloy phase diagrams, ASM International, Materials Park, Ohio, (1990).

Google Scholar

[40] L. Clevenger, C. Thompson, R. Cammarata, K. Tu, Reaction-Kinetics of Nickel Silicon Multilayer Films, Appl. Phys. Lett. 52 (1988) 795–797.

DOI: 10.1063/1.99644

Google Scholar

[41] L. Clevenger, C. Thompson, Nucleation-Limited Phase Selection During Reactions in Nickel Amorphous-Silicon Multilayer Thin-Films, J. Appl. Phys. 67 (1990) 1325–1333.

DOI: 10.1063/1.345685

Google Scholar

[42] C. Lavoie, C. Coia, F.M. d'Heurle, C. Detavernier, C. Cabral, P. Desjardins, A.J. Kellock, Reactive diffusion in the Ni-Si system: phase sequence and formation of metal-rich phases, in: M. Danielewski, R. Filipek, R. Kozubs, W. Kucza, P. Zieba, Z. Zurek (Eds.), Diffus. Mater. Dimat 2004 Pts 1 2, 2005: p.825–836.

DOI: 10.4028/www.scientific.net/ddf.237-240.825

Google Scholar

[43] S. Gaudet, C. Coia, P. Desjardins, C. Lavoie, Metastable phase formation during the reaction of Ni films with Si(001): The role of texture inheritance, J. Appl. Phys. 107 (2010) 093515.

DOI: 10.1063/1.3327451

Google Scholar

[44] C. Coia, Metastable compound formation during thin-film solid state reaction in the Ni-Si system: microstructure and growth kinetics, (2008).

Google Scholar

[45] P.J. Grunthaner, Metal/silicon interface formation: The Ni/Si and Pd/Si systems, J. Vac. Sci. Technol. 19 (1981) 649.

DOI: 10.1116/1.571079

Google Scholar

[46] F. d'Heurle, C.S. Petersson, J.E.E. Baglin, S.J. La Placa, C.Y. Wong, Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds, J. Appl. Phys. 55 (1984) 4208.

DOI: 10.1063/1.333021

Google Scholar

[47] C. Detavernier, C. Lavoie, Influence of Pt addition on the texture of NiSi on Si(001), Appl. Phys. Lett. 84 (2004) 3549.

DOI: 10.1063/1.1719276

Google Scholar

[48] F. Panciera, D. Mangelinck, K. Hoummada, M. Texier, M. Bertoglio, A. De Luca, M. Gregoire, M. Juhel, Direct epitaxial growth of θ-Ni2Si by reaction of a thin Ni(10 at.% Pt) film with Si(1 0 0) substrate, Scr. Mater. 78–79 (2014) 9–12.

DOI: 10.1016/j.scriptamat.2014.01.010

Google Scholar

[49] F. Panciera, La sonde atomique tomographique : applications aux dispositifs CMOS avancés sub-45nm, (2012).

Google Scholar

[50] M. El Kousseifi, K. Hoummada, M. Bertoglio, D. Mangelinck, Selection of the first Ni silicide phase by controlling the Pt incorporation in the intermixed layer, Acta Mater. 106 (2016) 193–198.

DOI: 10.1016/j.actamat.2016.01.004

Google Scholar

[51] W.H. Wang, H.Y. Bai, Y. Zhang, W.K. Wang, Phase selection in interfacial reaction of Ni/amorphous Si multilayers, J. Appl. Phys. 73 (1993) 4313–4318.

DOI: 10.1063/1.352814

Google Scholar

[52] F.M. d'Heurle, P. Gas, Kinetics of formation of silicides: A review, J. Mater. Res. 1 (1986) 205–221.

Google Scholar

[53] K. Hoummada, D. Mangelinck, A. Portavoce, Kinetic of Formation of Ni and Pd Silicides: Determination of Interfacial Mobility and Interdiffusion Coefficient by <i>In Situ</i> Techniques, Solid State Phenom. 172–174 (2011) 640–645.

DOI: 10.4028/www.scientific.net/ssp.172-174.640

Google Scholar

[54] K. Hoummada, A. Portavoce, C. Perrin-Pellegrino, D. Mangelinck, C. Bergman, Differential scanning calorimetry measurements of kinetic factors involved in salicide process, Appl. Phys. Lett. 92 (2008) 133109.

DOI: 10.1063/1.2905293

Google Scholar

[55] K. Coffey, K. Barmak, D. Rudman, S. Foner, Thin-Film Reaction-Kinetics of Niobium Aluminum Multilayers, J. Appl. Phys. 72 (1992) 1341–1349.

DOI: 10.1063/1.351744

Google Scholar

[56] G. Lucadamo, K. Barmak, S. Hyun, C. Cabral Jr., C. Lavoie, Evidence of a two-stage reaction mechanism in sputter deposited Nb/Al multilayer thin-films studied by in situ synchrotron X-ray diffraction, Mater. Lett. 39 (1999) 268–273.

DOI: 10.1016/s0167-577x(99)00017-8

Google Scholar

[57] C. Bergman, J.L. Joulaud, M. Capitan, G. Clugnet, P. Gas, In situ real-time analysis of the formation of a quasicrystalline phase in Al-Co multilayers by solid-state reaction, J. Non-Cryst. Solids. 287 (2001) 193–196.

DOI: 10.1016/s0022-3093(01)00558-0

Google Scholar

[58] R. Delattre, O. Thomas, C. Perrin-Pellegrino, C. Rivero, R. Simola, First stage of CoSi2 formation during a solid-state reaction, J. Appl. Phys. 116 (2014) 245301.

DOI: 10.1063/1.4904852

Google Scholar

[59] V. Vovk, G. Schmitz, R. Kirchheim, Nucleation of product phase in reactive diffusion of Al/Co, Phys. Rev. B. 69 (2004).

DOI: 10.1103/physrevb.69.104102

Google Scholar

[60] K. Hoummada, E. Cadel, D. Mangelinck, C. Perrin-Pellegrino, D. Blavette, B. Deconihout, First stages of the formation of Ni silicide by atom probe tomography, Appl. Phys. Lett. 89 (2006) 181905.

DOI: 10.1063/1.2370501

Google Scholar

[61] L. Klinger, Y. Bréchet, G. Purdy, On the kinetics of interface-diffusion-controlled peritectoid reactions, Acta Mater. 46 (1998) 2617–2621.

DOI: 10.1016/s1359-6454(97)00471-0

Google Scholar

[62] G. Lucenko, A. Gusak, A model of the growth of intermediate phase islands in multilayers, Microelectron. Eng. 70 (2003) 529–532.

DOI: 10.1016/s0167-9317(03)00432-5

Google Scholar

[63] M. Pasichnyy, A. Gusak, Model of Lateral Growth Stage during Reactive Phase Formation, Defect Diffus. Forum. 277 (2008) 47–52.

DOI: 10.4028/www.scientific.net/ddf.277.47

Google Scholar

[64] F.R. de Boer, A.R. Niessen, A.R. Miedema, W.C.M. Mattens, R. Boom, Cohesion in Metals, Elsevier Science Ltd, Amsterdam, (1988).

Google Scholar

[65] E. Ma, L. Clevenger, C. Thompson, Nucleation of an Intermetallic at Thin-Film Interfaces - Vsi2 Contrasted with Al3ni, J. Mater. Res. 7 (1992) 1350–1355.

DOI: 10.1557/jmr.1992.1350

Google Scholar

[66] J.W. Christian, The Theory of Transformation Rates in Metals and Alloys, Part I, Pergamon, Oxford, (1975).

Google Scholar

[67] M. El Kousseifi, K. Hoummada, T. Epicier, D. Mangelinck, Direct observation of NiSi lateral growth at the epitaxial θ-Ni2Si/Si(1 0 0) interface, Acta Mater. 99 (2015) 1–6.

DOI: 10.1016/j.actamat.2015.07.062

Google Scholar

[68] D. Mangelinck, M. El Kousseifi, K. Hoummada, F. Panciera, T. Epicier, Lateral growth of NiSi at the θ-Ni2Si/Si(100) interface: Experiments and modelling, Microelectron. Eng. 199 (2018) 45–51.

DOI: 10.1016/j.mee.2018.07.014

Google Scholar

[69] S.V. Divinski, F. Hisker, A. Bartels, C. Herzig, Interphase boundary diffusion of 44Ti in two-phase TiAl with lamellar α2/γ structure, Scr. Mater. 45 (2001) 161–167.

DOI: 10.1016/s1359-6462(01)01006-5

Google Scholar

[70] C. Herring, Surface tension as a motivation for sintering, in: Phys. Powder Metall., McGraw-Hill Book Co., W.E. Kingston, New York, 1951: p.143.

Google Scholar

[71] B.L. Adams, S. Ta'Asan, D. Kinderlehrer, I. Livshits, D.E. Mason, C.-T. Wu, W.W. Mullins, G.S. Rohrer, A.D. Rollett, D.M. Saylor, Extracting Grain Boundary and Surface Energy from Measurement of Triple Junction Geometry, Interface Sci. 7 (1999) 321–337.

DOI: 10.1023/a:1008733728830

Google Scholar

[72] H.I. Aaronson, M. Enomoto, J.K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys, CRC Press, (2016).

DOI: 10.1201/b15829

Google Scholar

[73] F. Nemouchi, Réactivité de films nanometriques de nickel sur substrats silicium-germanium, (2005).

Google Scholar

[74] B.E. Deal, A.S. Grove, General Relationship for the Thermal Oxidation of Silicon, J. Appl. Phys. 36 (1965) 3770.

Google Scholar

[75] F. Nemouchi, D. Mangelinck, C. Bergman, G. Clugnet, P. Gas, J.L. Lábár, Simultaneous growth of Ni5Ge3 and NiGe by reaction of Ni film with Ge, Appl. Phys. Lett. 89 (2006) 131920.

DOI: 10.1063/1.2358189

Google Scholar

[76] F. Nemouchi, D. Mangelinck, J.L. Lábár, M. Putero, C. Bergman, P. Gas, A comparative study of nickel silicides and nickel germanides: Phase formation and kinetics, Microelectron. Eng. 83 (2006) 2101–2106.

DOI: 10.1016/j.mee.2006.09.014

Google Scholar

[77] D. Mangelinck, Chapter 9 - The Growth of Silicides and Germanides, in: Handb. Solid State Diffus. Vol. 2, Elsevier, 2017: p.379–446.

DOI: 10.1016/b978-0-12-804548-0.00009-8

Google Scholar

[78] D. Mangelinck, T. Luo, C. Girardeaux, Reactive diffusion in the presence of a diffusion barrier: Experiment and model, J. Appl. Phys. 123 (2018) 185301.

DOI: 10.1063/1.5023578

Google Scholar

[79] D. Mangelinck, K. Hoummada, A. Portavoce, C. Perrin, R. Daineche, M. Descoins, D.J. Larson, P.H. Clifton, Three-dimensional composition mapping of NiSi phase distribution and Pt diffusion via grain boundaries in Ni2Si, Scr. Mater. 62 (2010) 568–571.

DOI: 10.1016/j.scriptamat.2009.12.044

Google Scholar