Diffusion-Limited Reactions of Non-Oxide Ceramics with Transition Metals

Article Preview

Abstract:

Thermodynamic and diffusion models are given to describe morphological evolution of the reaction zone during diffusion-limited interaction between non-oxide Si-containing ceramics (SiC and Si3N4) and transition metals (Cr, Mo, Ti, Ni, Co, Pt). In the case of diffusion-controlled process in the ternary metal-ceramic systems, reaction phenomena can be rationalized using chemical potential diagrams. However, in some cases, a periodic layered morphology is found in the transition zone, which is not fully understood, and it is difficult to predict a priori. Silicide formation in systems based on dense Silicon Nitride and non-nitride forming metals can be explained by assuming a nitrogen pressure build-up at the contact surface. This pressure determines the chemical potential of Silicon at the interface, and hence, the product phases in the diffusion zone. Traces of Oxygen in the ambient atmosphere might affect the interaction in non-oxide ceramic/transition metal systems. The thermodynamic stability of the condensed phases in the systems where volatile species may form can be interpreted using predominant area-type diagrams.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 21)

Pages:

85-126

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. A. Kodentsov, A. Paul, Diffusion Couple Technique: A Research Tool in Materials Science, in: A. Paul, S. Divinski (Eds.), Handbook of Solid State Diffusion-Diffusion Fundamentals and Techniques, Vol 2, Elsevier, 2017, pp.207-275.

DOI: 10.1016/b978-0-12-804548-0.00006-2

Google Scholar

[2] G.F. Bastin, H.J.M Heijligers, Quantitative electron probe microanalysis of carbon in binary carbides, X-ray Spec. 15 (1986) 135-150.

DOI: 10.1002/xrs.1300150212

Google Scholar

[3] J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig, Jr., C.E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, (1992).

DOI: 10.1007/978-1-4613-0491-3

Google Scholar

[4] C.A. Wallace, R.C.C. Ward, An X-ray cylindrical texture camera for the examination of thin films, J. Appl. Cryst. 8 (1975) 255-260.

DOI: 10.1107/s0021889875010424

Google Scholar

[5] J.S. Kirkaldy, L.C. Brown, Diffusion behaviour in ternary, multiphase systems, Can. Metall. Quat. 2 (1963) 89-117.

Google Scholar

[6] J.B. Clark, Conventions for plotting the diffusion paths in multiphase ternary diffusion couple on the isothermal section of a ternary phase diagram, Trans. Met. Soc. AIME 227 (1963) 1250-1251.

Google Scholar

[7] C. Wagner, Über den Mechanismus von doppelten Umsetzungen durch Reaktion im festen Zustand, Z. Anorg. Allgem. Chem. 236 (1938) 320-338 (in German).

DOI: 10.1002/zaac.19382360130

Google Scholar

[8] R.A. Rapp, A. Ezis, G.J. Yurek, Displacement reactions in the solid state, Metall. Trans. 4 (1973) 1283-1292.

DOI: 10.1007/bf02644523

Google Scholar

[9] C. Wagner, Oxidation of alloys involving noble metals, J. Electrochem. Soc. 103 (1956) 571-580.

DOI: 10.1149/1.2430159

Google Scholar

[10] C. Wagner, Beitrag zur Theorie des Anlaufvorgangs, Z. Phys. Chem. B21 (1933) 25-41 (in German).

Google Scholar

[11] G.J. Yurek, R.A. Rapp, J.P. Hirth, Kinetics of the displacement reactions between iron and Cu2O, Metall. Trans. 4 (1973) 1293-1299.

DOI: 10.1007/bf02644524

Google Scholar

[12] S.R. Shatynski, J.P. Hirth, R.A. Rapp, Solid-state displacement reactions between selected metals and sulfides, Metall. Trans. A 10 (1979) 591-598.

DOI: 10.1007/bf02658322

Google Scholar

[13] F.J.J. van Loo, Multiphase diffusion in binary and ternary solid-state systems, Prog. Solid State Chem. 20 (1990) 47-99.

DOI: 10.1016/0079-6786(90)90007-3

Google Scholar

[14] M. Backhaus-Ricoult, Diffusion processes and interphase boundary morphology in ternary metal-ceramic systems, Ber. Bunsenges. Phys. Chem. 90 (1986) 684-690.

DOI: 10.1002/bbpc.19860900813

Google Scholar

[15] K.P. Trumble, M. Rühle, The role of oxygen for the spinel interphase formation at diffusion-bonded Ni/Al2O3 interfaces, Z. Metallkd. 81 (1990) 749-755.

DOI: 10.1016/b978-0-08-040505-6.50023-4

Google Scholar

[16] K.P. Trumble, M. Rühle, The thermodynamic of spinel interphase formation at diffusion-bonded Ni/Al2O3 interfaces, Acta Metall. Mater. 39 (1991) 1915-1924.

DOI: 10.1016/0956-7151(91)90160-3

Google Scholar

[17] F.J.J. van Loo, J.A. van Beek, G.F. Bastin, R. Metselaar, On the layer sequence and morphology in solid-state displacement reactions, Oxid. Met. 22 (1984) 161-180.

DOI: 10.1007/bf00656903

Google Scholar

[18] S.L. Markovski, M.J.H. van Dal, M.J.L. Verbeek, A.A. Kodentsov, F.J.J. van Loo, Microstructology of solid-state reactions, J. Phase Equilibria 20 (1999) 373–388.

DOI: 10.1361/105497199770340905

Google Scholar

[19] J.E. Lane, J.S. Kirkaldy, Diffusion in multicomponent metallic systems VIII, Can. J. Phys. 42 (1964) 1643-1657.

DOI: 10.1139/p64-149

Google Scholar

[20] K.J. Rönkä, A.A. Kodentsov, P.J.J. van Loon, J.K. Kivilahti, F.J.J. van Loo, Thermodynamic and kinetic study of diffusion paths in the system Cu-Fe-Ni, Metall. Mater. Trans. A 27A (1996) 2229-2238.

DOI: 10.1007/bf02651877

Google Scholar

[21] F.J.J. van Loo, J.A. van Beek, G.F. Bastin, R. Metselaar, The role of thermodynamics and kinetics in multiphase ternary diffusion, in: M.A. Dayananda, G.E. Murch (Eds.), Diffusion in Solids: Recent Developments, The Metallurgical Society, Inc., 1985, pp.231-259.

Google Scholar

[22] A.D. Pelton, H. Schmalzried, On the geometrical representation of phase equilibria, Metall. Trans. 4 (1973) 1395-1404.

DOI: 10.1007/bf02644538

Google Scholar

[23] A.D. Pelton, W.T. Thompson, Phase diagrams, Prog. Solid State Chem. 10 (1975) 119-155.

Google Scholar

[24] P.J.C. Vosters, M.A.J.Th. Laheij, F.J.J. van Loo, R. Metselaar, The influence of impurities on the kinetics of the displacement reaction between Ni or Co and Cu2O, Oxid. Met. 20 (1983) 147-160.

DOI: 10.1007/bf00662044

Google Scholar

[25] F.J.J. van Loo, F.M. Smet, G.D. Rieck, G. Verspui, Phase relations and diffusion paths in the Mo-Si-C system at 1200 ºC, High Temp.- High Press. 14 (1982) 25-31.

Google Scholar

[26] F.J.J. van Loo, A.A. Kodentsov, Interfacial chemistry: Reactions in inorganic systems, Pure Appl. Chem. 70 (1998) 501-508.

DOI: 10.1351/pac199870020501

Google Scholar

[27] J.-C. Lin, K.J. Schulz, K.-C. Hsieh, Y.A. Chang, Interfacial reactions between metals and gallium arsenide, J. Electrochem. Soc. 136 (1989) 3306-3010.

DOI: 10.1149/1.2096392

Google Scholar

[28] S. Sambasivan, W.T. Petuskey, Phase relationships in the Ti-Si-C system at high pressures, J. Mater. Res. 7 (1992)1473-1479.

DOI: 10.1557/jmr.1992.1473

Google Scholar

[29] N. Naka, J.C. Feng, J.C. Schuster, Phase reaction and diffusion path in the SiC/Ti System, Metall. Mater. Trans. A 28A 1997) 1385-1390.

DOI: 10.1007/s11661-997-0275-3

Google Scholar

[30] W.J.J. Wakelkamp, F.J.J. van Loo, R. Metselaar, Phaae relations in the Ti-Si-C system, J. Eur. Ceram. Soc. 8 (1991) 135-139.

Google Scholar

[31] M. Backhaus-Ricoult, Solid state reactions between silicon carbide and various transition metals, Ber. Bunsenges. Phys. Chem. 93 (1989) 1277- 1281.

DOI: 10.1002/bbpc.19890931127

Google Scholar

[32] I. Gotman, E.Y. Gutmanas, P. Mogilevsky, Interaction between SiC and Ti powder, J. Mater. Res. 8 (1993) 2725-2733.

DOI: 10.1557/jmr.1993.2725

Google Scholar

[33] X.L. Li, R. Hillel, F. Teyssandier, S.K. Choi, F.J.J. van Loo, Reactions and phase relations in the Ti-Al-O system, Acta Metall. Mater. 40 (1992) 3149-3157.

DOI: 10.1016/0956-7151(92)90478-w

Google Scholar

[34] J.I. Goldstein, S.K. Choi, F.J.J. van Loo, G.F. Bastin, R. Metselaar, Solid-state reactions and phase relations in the Ti-Si-O system at 1373 K, J. Am. Ceram. Soc.78 (1995) 313-322.

DOI: 10.1111/j.1151-2916.1995.tb08802.x

Google Scholar

[35] H. Inaba, H. Yokokawa, Analysis of interfacial reactions by the use of chemical potential diagrams, J. Phase Equilibria 17 (1996) 278-289.

DOI: 10.1007/bf02665554

Google Scholar

[36] F.J.J. van Loo, M.R. Rijnders, K.J. Rönkä, J.H. Gülpen, A.A. Kodentsov, Solid state diffusion and reactive phase formation, Solid State Ionics 95 (1997) 95-106.

DOI: 10.1016/s0167-2738(96)00550-4

Google Scholar

[37] H. Yokokawa, Generalized chemical potential diagram and its applications to chemical reactions at interfaces between dissimilar materials, J. Phase Equilibria 20 (1999) 258-287.

DOI: 10.1361/105497199770335794

Google Scholar

[38] M.R. Rijnders, A.A. Kodentsov, J.A. van Beek, J. van den Akker, F.J.J. van Loo, Pattern formation in Pt-SiC diffusion couples, Solid State Ionics 95 (1997) 51-59.

DOI: 10.1016/s0167-2738(96)00578-4

Google Scholar

[39] A.A. Kodentsov and F.J.J. van Loo, Metallization of SiC ceramics: Chemical aspects, in: High Temperature Materials Chemistry, K. E. Spear (Ed.), The Electrochemical Society, Inc., Pennington, New Jersey, Vol. 97-39, 1997, pp.468-471.

Google Scholar

[40] A.A. Kodentsov, M.R. Rijnders, F.J.J. van Loo, Periodic pattern formation in solid state reactions related to the Kirkendall effect. Acta Mater. 46 (1998) 6521-6528.

DOI: 10.1016/s1359-6454(98)00309-7

Google Scholar

[41] A.A. Kodentsov, M. van Dal, C. Cserháti, F.J.J. van Loo, Reactive phase formation in binary and ternary silicide systems. in: L. Maglio, F. d'Heurle (Eds.), Silicides-Fundamentals and Applications, World Scientific Ltd. Singapore, 2000, pp.187-218.

DOI: 10.1142/9789812792136_0015

Google Scholar

[42] A.A. Kodentsov, M.J.H. van Dal, C. Cserháti, A.M. Gusak, F.J.J. van Loo, Patterning in reactive diffusion, Defect Diffusion Forum 194-199 (2001)1491-1502.

DOI: 10.4028/www.scientific.net/ddf.194-199.1491

Google Scholar

[43] A.A. Kodentsov, F.J.J. van Loo, Periodic pattern formation in metal-ceramic reactions, Adv. Sci. Tech. 46 (2006)136 -145.

Google Scholar

[44] R.L. Mehan, M.R. Jackson, A Study of solid metal/ceramic reactions, in: J. Pask, A. Evans (Eds.), Surface and Interfaces in Ceramic and Ceramic-Metal Systems, Plenum Press, New York, 1981, pp.513-523.

DOI: 10.1007/978-1-4684-3947-2_45

Google Scholar

[45] R.C.J. Schiepers, J.A. van Beek, F.J.J. van Loo, G. de With, The interaction between SiC and Ni, Fe, (Fe,Ni) and steel: Morphology and kinetics, J. Eur. Ceram. Soc. 9 (1993) 211-218.

DOI: 10.1016/0955-2219(93)90090-e

Google Scholar

[46] J.H. Gülpen, A.A. Kodentsov, F.J.J. van Loo, Growth of silicides in Ni-Si and Ni-SiC bulk diffusion couples, Z. Metallkd. 86 (1995) 530-539.

DOI: 10.1515/ijmr-1995-860803

Google Scholar

[47] K. Bhanumurhy, R. Schmid-Fetzer, Experimental study of ternary Pd-Si-C phase equilibria and Pd/SiC interface reactions, Z. Metallkd. 87 (1996) 244-253.

DOI: 10.1515/ijmr-1996-870402

Google Scholar

[48] L. Klinger, I. Gotman, I. Gutman, A switch-over model of periodic structure formation in ternary diffusion couples, Scripta Mater. 45 (2001) 1221-1226.

DOI: 10.1016/s1359-6462(01)01153-8

Google Scholar

[49] K. Osinski, A.W. Vriend, G.F. Bastin, F.J.J. van Loo, Periodic formation of FeSi bands in diffusion couples Fe(15wt%Si)-Zn, Z. Metallkd. 73 (1982) 258-261.

DOI: 10.1515/ijmr-1982-730412

Google Scholar

[50] M.R. Rijnders, F.J.J. van Loo, Aspects of periodic layer formation in Co2Si/Zn diffusion couples, Scripta Metall. Mater. 32 (1995)1931-1935.

DOI: 10.1016/0956-716x(95)00082-7

Google Scholar

[51] M.R. Rijnders, A.A. Kodentsov, Cs. Cserháti, J. van den Akker, F.J.J. van Loo, Periodic layer formation during solid state reactions, Defect Diffusion Forum 129-130 (1996) 253-266.

DOI: 10.4028/www.scientific.net/ddf.129-130.253

Google Scholar

[52] S.F. Dunaev, S.A. Zver'kov, Influence of high pressure on the formation of periodic regular structures in multicomponent diffusion zones, J. Less-Comm. Met. 153 (1989) 143-150.

DOI: 10.1016/0022-5088(89)90540-7

Google Scholar

[53] A.A. Kodentsov, A. Paul, F.J.J. van Loo, Bifurcation of the Kirkendall plane and patterning in reactive diffusion, Z. Metallkd. 95 (2004) 258-260.

DOI: 10.3139/146.017946

Google Scholar

[54] F.J.J. van Loo, B. Pieraggi, R.A. Rapp, Interface migration and the Kirkendall effect in diffusion-driven phase transformations, Acta Metall. Mater. 38 (1990) 1769-1779.

DOI: 10.1016/0956-7151(90)90019-d

Google Scholar

[55] B. Pieraggi, R.A. Rapp, F.J.J. van Loo, J.P. Hirth, Interfacial dynamics in diffusion-driven phase transformations, Acta Metall. Mater. 38 (1990) 1781-1788.

DOI: 10.1016/0956-7151(90)90020-h

Google Scholar

[56] F.J.J. van Loo, B. Pieraggi, Reaction and diffusion in multiphase systems: Phenomenology and frames, Mater. Sci. Forum 155-156 (1994) 307-316.

DOI: 10.4028/www.scientific.net/msf.155-156.307

Google Scholar

[57] G.F. Bastin, G.D. Rieck, Diffusion in the titanium-nickel system: I. Occurrence and growth of the various intermetallic compounds, Metall. Trans. 5 (1974) 1817-1826.

DOI: 10.1007/bf02644146

Google Scholar

[58] M.J.H. van Dal, A.M. Gusak, C. Cserháti, A.A. Kodentsov, F.J.J. van Loo, Microstructural stability of the Kirkendall plane in solid-state diffusion, Phys. Rev. Lett., 86 (2001) 3352-3355.

DOI: 10.1103/physrevlett.86.3352

Google Scholar

[59] A. Paul, A.A. Kodentsov, M.J.H. van Dal, F.J.J. van Loo, The Kirkendall effect in multiphase diffusion, Acta Mater. 52 (2004) 623-630.

DOI: 10.1016/j.actamat.2003.10.007

Google Scholar

[60] A. Kodentsov, A. Paul, M.J.H. van Dal, Cs. Cserháti, A.M. Gusak, F.J.J. van Loo, On the spatial stability and bifurcation of the Kirkendall plane during solid-state interdiffusion, Crit. Rev. Solid State Mater. Sci. 33 (2008) 210-233.

DOI: 10.1080/10408430802462958

Google Scholar

[61] R.A. Swalin, Thermodynamics of Solids, second ed., John Wiley & Sons, Inc., New York, USA, (1972).

Google Scholar

[62] L.S Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME, 175 (1948) 184-201.

DOI: 10.1007/s11661-010-0177-7

Google Scholar

[63] C. Matano, On the relation between the diffusion-coefficients and concentrations of solid metals (The Nickel-Copper system), Jap. J. Phys. 8 (1933) 109-113.

Google Scholar

[64] F. Sauer, V. Freise, Diffusion in Binären Gemischen mit Volumenänderung, Z. Electrochem. 66 (1962) 353-363 (in German).

Google Scholar

[65] M.J.H. van Dal, A.A. Kodentsov, F.J.J. van Loo, Formation of Co-Si intermetallics in bulk diffusion couples. Part II: Manifestations of the Kirkendall effect accompanying reactive diffusion, Intermetallics 9 (2001) 451-456.

DOI: 10.1016/s0966-9795(01)00019-x

Google Scholar

[66] C. Wagner, The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems, Acta Metall. 17 (1969) 99-107.

DOI: 10.1016/0001-6160(69)90131-x

Google Scholar

[67] M.J.H. van Dal, D.G.G.M. Huibers, A.A. Kodentsov, F.J.J. van Loo, Formation of Co-Si intermetallics in bulk diffusion couples. Part I: Growth kinetics and mobilities of species in the silicide phases. Intermetallics 9 (2001) 409-421.

DOI: 10.1016/s0966-9795(01)00018-8

Google Scholar

[68] G.F. Bastin, Diffusie in het Systeem Titaan-Nikkel, PhD thesis, Eindhoven, The Netherlands, 1972 (in Dutch).

Google Scholar

[69] I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems II, J. Chem. Phys. 48 (1968)1695-1700.

DOI: 10.1063/1.1668896

Google Scholar

[70] H. Malchow, H. Rosé, C. Sattler, Spatial and spatio-temporal reaction-diffusion patterns in heterogeneous media, J. Non-equilib. Thermodyn. 17 (1992) 41-52.

DOI: 10.1515/jnet.1992.17.1.41

Google Scholar

[71] A.N. Zaikin, A.M. Zhabotinsky, Concentration wave propagation in two-dimensional liquid-phase self-oscillating system, Nature 225 (1970) 535-537.

DOI: 10.1038/225535b0

Google Scholar

[72] R. Kapral, Pattern formation in chemical systems, Physica D 86 (1995) 149-157.

Google Scholar

[73] J.S. Kirkaldy, Spontaneous evolution of spatiotemporal patterns in materials, Rep. Prog. Phys. 55 (1992) 723-795.

DOI: 10.1088/0034-4885/55/6/002

Google Scholar

[74] J.S. Kirkaldy, Spontaneous evolution of microstructure in materials, Metall. Trans. A 24A (1993) 1689-1721.

Google Scholar

[75] C.S. Lim, H. Nickel, A. Naoumidis, E. Gyrmati, Interface structure and reaction kinetics between SiC and thick cobalt foils, J. Mat. Sci. 31 (1996) 4241-4247.

DOI: 10.1007/bf00356445

Google Scholar

[76] W.F. Knippenberg, Growth phenomena in silicon carbide, Philips Res. Rep. 18 (1963) 161-274.

Google Scholar

[77] W.J.J. Wakelkamp, Diffusion and Phase Relations in the Systems Ti-Si-C and Ti-Si-N, PhD thesis, The Netherlands, (1991).

Google Scholar

[78] M. Paulasto, F.J.J. van Loo, J.K. Kivilahti, J. Physique IV 3 (1993) 1069-1072.

Google Scholar

[79] S. Sambasivan, W.T. Petuskey, Phase chemistry in the Ti-Si-N system: Thermochemical review with phase stability diagrams, J. Mat. Res. 9 (1994) 2362-2369.

DOI: 10.1557/jmr.1994.2362

Google Scholar

[80] M. Paulasto, J.K. Kivilahti, F.J.J. van Loo, Interfacial reactions in Ti/Si3N4 and TiN/Si diffusion couples, J. Appl. Phys. 77 (1995) 4412-4416.

DOI: 10.1063/1.359468

Google Scholar

[81] J.C. Schuster, H. Nowotny, Silicon Nitride and Transition Metals: A Critical Evaluation of Existing Phase Diagram Data Supplemented by New Experimental Results, in: H. Bildstein (ed.), 11th International Plansee Seminar' 85, Reutte, Tirol, Austria, 1985, pp.899-911.

DOI: 10.1016/0263-4368(93)90045-h

Google Scholar

[82] S. Somia, M. Yoshimura, N. Shinohara, Reactions and phase relations in the system Si-Ti-N between 1400 and 1650 ºC under 1 atm N2, Rept. Res. Lab. Eng. Mater. Tokyo Inst. Technol. 6 (1984) 107-117.

Google Scholar

[83] R. Beyers, R. Sinclair and M.E. Thomas, Phase equilibria in thin-film metallizations, J. Vac. Sci. Technol. B2 (1984) 781-784.

DOI: 10.1116/1.582879

Google Scholar

[84] G.F. Bastin, H.J.M. Heijligers, J.F. Pinxter, Quantitative EPMA of nitrogen in Ti-N compounds, in: Microbeam Analysis-1988, D.E. Newburg (Ed.), San Francisco Press, Inc., 1988 pp.290-294.

Google Scholar

[85] A.A. Kodentsov, J.K. Kivilahti, F.J.J. van Loo, Thermodynamic evaluation of solid-state reactions in which a volatile product is formed, Monatsh. Chem. 136 (2005) 1861-1869.

DOI: 10.1007/s00706-005-0313-z

Google Scholar

[86] K. Zeng, R. Schmid-Fetzer, Critical assessment and thermodynamic modelling of the Ti-N system, Z. Metallkd. 87 (1996) 540-554.

DOI: 10.1515/ijmr-1996-870706

Google Scholar

[87] E. Heikinheimo, A. Kodentsov, J.A. van Beek, J.T. Klomp, F.J.J. van Loo, Reactions in the systems Mo-Si3N4 and Ni-Si3N4, Acta Metall. Mater. 40 (1992) S111-S119.

DOI: 10.1016/0956-7151(92)90270-o

Google Scholar

[88] A.A. Kodentsov, J.K. Kivilahti, F.J.J. van Loo, The formation of nitride phases during diffusion bonding of Ni-Cr alloys with Si3N4-ceramics, High Temp. Mater. Sci. 34 (1995) 137-153.

Google Scholar

[89] A.A. Kodentsov, J.H. Gülpen, Cs. Cserháti, J.K. Kivilahti, F.J.J. van Loo, High-temperature nitridation of Ni-Cr alloys, Metall. Mater. Trans. A 27A (1996) 59-69.

DOI: 10.1007/bf02647747

Google Scholar

[90] E. Heikinheimo, I. Isomäki, A.A. Kodentsov, F.J.J. van Loo, Chemical interaction between Fe and silicon nitride ceramic, J. Eur. Ceram. Soc., 17 (1997) 25-31.

DOI: 10.1016/s0955-2219(96)00082-9

Google Scholar

[91] A.H. Heuer, V.L.K. Lou, Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high-temperature decomposition and oxidation, J. Am. Cram. Soc. 73 (1990) 2785-3128.

DOI: 10.1111/j.1151-2916.1990.tb06677.x

Google Scholar

[92] R. Metselaar, J.A. van Beek, A.A. Kodentsov, F.J.J. van Loo, Carbothermal processing of silicon carbide ceramics, in: Advanced Materials'93, N. Mizutani, K. Akashi, T. Kimura, S. Ohno (Eds.), Trans. Mat. Res. Soc. Jpn., Elsevier, 1994, pp.809-804.

DOI: 10.1016/b978-0-444-81991-8.50196-5

Google Scholar