p.1
p.29
p.85
p.127
p.157
Diffusion-Limited Reactions of Non-Oxide Ceramics with Transition Metals
Abstract:
Thermodynamic and diffusion models are given to describe morphological evolution of the reaction zone during diffusion-limited interaction between non-oxide Si-containing ceramics (SiC and Si3N4) and transition metals (Cr, Mo, Ti, Ni, Co, Pt). In the case of diffusion-controlled process in the ternary metal-ceramic systems, reaction phenomena can be rationalized using chemical potential diagrams. However, in some cases, a periodic layered morphology is found in the transition zone, which is not fully understood, and it is difficult to predict a priori. Silicide formation in systems based on dense Silicon Nitride and non-nitride forming metals can be explained by assuming a nitrogen pressure build-up at the contact surface. This pressure determines the chemical potential of Silicon at the interface, and hence, the product phases in the diffusion zone. Traces of Oxygen in the ambient atmosphere might affect the interaction in non-oxide ceramic/transition metal systems. The thermodynamic stability of the condensed phases in the systems where volatile species may form can be interpreted using predominant area-type diagrams.
Info:
Periodical:
Pages:
85-126
Citation:
Online since:
March 2019
Authors:
Price:
Сopyright:
© 2019 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] A. A. Kodentsov, A. Paul, Diffusion Couple Technique: A Research Tool in Materials Science, in: A. Paul, S. Divinski (Eds.), Handbook of Solid State Diffusion-Diffusion Fundamentals and Techniques, Vol 2, Elsevier, 2017, pp.207-275.
[2] G.F. Bastin, H.J.M Heijligers, Quantitative electron probe microanalysis of carbon in binary carbides, X-ray Spec. 15 (1986) 135-150.
[3] J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig, Jr., C.E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, (1992).
[4] C.A. Wallace, R.C.C. Ward, An X-ray cylindrical texture camera for the examination of thin films, J. Appl. Cryst. 8 (1975) 255-260.
[5] J.S. Kirkaldy, L.C. Brown, Diffusion behaviour in ternary, multiphase systems, Can. Metall. Quat. 2 (1963) 89-117.
[6] J.B. Clark, Conventions for plotting the diffusion paths in multiphase ternary diffusion couple on the isothermal section of a ternary phase diagram, Trans. Met. Soc. AIME 227 (1963) 1250-1251.
[7] C. Wagner, Über den Mechanismus von doppelten Umsetzungen durch Reaktion im festen Zustand, Z. Anorg. Allgem. Chem. 236 (1938) 320-338 (in German).
[8] R.A. Rapp, A. Ezis, G.J. Yurek, Displacement reactions in the solid state, Metall. Trans. 4 (1973) 1283-1292.
DOI: 10.1007/bf02644523
[9] C. Wagner, Oxidation of alloys involving noble metals, J. Electrochem. Soc. 103 (1956) 571-580.
DOI: 10.1149/1.2430159
[10] C. Wagner, Beitrag zur Theorie des Anlaufvorgangs, Z. Phys. Chem. B21 (1933) 25-41 (in German).
[11] G.J. Yurek, R.A. Rapp, J.P. Hirth, Kinetics of the displacement reactions between iron and Cu2O, Metall. Trans. 4 (1973) 1293-1299.
DOI: 10.1007/bf02644524
[12] S.R. Shatynski, J.P. Hirth, R.A. Rapp, Solid-state displacement reactions between selected metals and sulfides, Metall. Trans. A 10 (1979) 591-598.
DOI: 10.1007/bf02658322
[13] F.J.J. van Loo, Multiphase diffusion in binary and ternary solid-state systems, Prog. Solid State Chem. 20 (1990) 47-99.
[14] M. Backhaus-Ricoult, Diffusion processes and interphase boundary morphology in ternary metal-ceramic systems, Ber. Bunsenges. Phys. Chem. 90 (1986) 684-690.
[15] K.P. Trumble, M. Rühle, The role of oxygen for the spinel interphase formation at diffusion-bonded Ni/Al2O3 interfaces, Z. Metallkd. 81 (1990) 749-755.
[16] K.P. Trumble, M. Rühle, The thermodynamic of spinel interphase formation at diffusion-bonded Ni/Al2O3 interfaces, Acta Metall. Mater. 39 (1991) 1915-1924.
[17] F.J.J. van Loo, J.A. van Beek, G.F. Bastin, R. Metselaar, On the layer sequence and morphology in solid-state displacement reactions, Oxid. Met. 22 (1984) 161-180.
DOI: 10.1007/bf00656903
[18] S.L. Markovski, M.J.H. van Dal, M.J.L. Verbeek, A.A. Kodentsov, F.J.J. van Loo, Microstructology of solid-state reactions, J. Phase Equilibria 20 (1999) 373–388.
[19] J.E. Lane, J.S. Kirkaldy, Diffusion in multicomponent metallic systems VIII, Can. J. Phys. 42 (1964) 1643-1657.
DOI: 10.1139/p64-149
[20] K.J. Rönkä, A.A. Kodentsov, P.J.J. van Loon, J.K. Kivilahti, F.J.J. van Loo, Thermodynamic and kinetic study of diffusion paths in the system Cu-Fe-Ni, Metall. Mater. Trans. A 27A (1996) 2229-2238.
DOI: 10.1007/bf02651877
[21] F.J.J. van Loo, J.A. van Beek, G.F. Bastin, R. Metselaar, The role of thermodynamics and kinetics in multiphase ternary diffusion, in: M.A. Dayananda, G.E. Murch (Eds.), Diffusion in Solids: Recent Developments, The Metallurgical Society, Inc., 1985, pp.231-259.
[22] A.D. Pelton, H. Schmalzried, On the geometrical representation of phase equilibria, Metall. Trans. 4 (1973) 1395-1404.
DOI: 10.1007/bf02644538
[23] A.D. Pelton, W.T. Thompson, Phase diagrams, Prog. Solid State Chem. 10 (1975) 119-155.
[24] P.J.C. Vosters, M.A.J.Th. Laheij, F.J.J. van Loo, R. Metselaar, The influence of impurities on the kinetics of the displacement reaction between Ni or Co and Cu2O, Oxid. Met. 20 (1983) 147-160.
DOI: 10.1007/bf00662044
[25] F.J.J. van Loo, F.M. Smet, G.D. Rieck, G. Verspui, Phase relations and diffusion paths in the Mo-Si-C system at 1200 ºC, High Temp.- High Press. 14 (1982) 25-31.
[26] F.J.J. van Loo, A.A. Kodentsov, Interfacial chemistry: Reactions in inorganic systems, Pure Appl. Chem. 70 (1998) 501-508.
[27] J.-C. Lin, K.J. Schulz, K.-C. Hsieh, Y.A. Chang, Interfacial reactions between metals and gallium arsenide, J. Electrochem. Soc. 136 (1989) 3306-3010.
DOI: 10.1149/1.2096392
[28] S. Sambasivan, W.T. Petuskey, Phase relationships in the Ti-Si-C system at high pressures, J. Mater. Res. 7 (1992)1473-1479.
[29] N. Naka, J.C. Feng, J.C. Schuster, Phase reaction and diffusion path in the SiC/Ti System, Metall. Mater. Trans. A 28A 1997) 1385-1390.
[30] W.J.J. Wakelkamp, F.J.J. van Loo, R. Metselaar, Phaae relations in the Ti-Si-C system, J. Eur. Ceram. Soc. 8 (1991) 135-139.
[31] M. Backhaus-Ricoult, Solid state reactions between silicon carbide and various transition metals, Ber. Bunsenges. Phys. Chem. 93 (1989) 1277- 1281.
[32] I. Gotman, E.Y. Gutmanas, P. Mogilevsky, Interaction between SiC and Ti powder, J. Mater. Res. 8 (1993) 2725-2733.
[33] X.L. Li, R. Hillel, F. Teyssandier, S.K. Choi, F.J.J. van Loo, Reactions and phase relations in the Ti-Al-O system, Acta Metall. Mater. 40 (1992) 3149-3157.
[34] J.I. Goldstein, S.K. Choi, F.J.J. van Loo, G.F. Bastin, R. Metselaar, Solid-state reactions and phase relations in the Ti-Si-O system at 1373 K, J. Am. Ceram. Soc.78 (1995) 313-322.
[35] H. Inaba, H. Yokokawa, Analysis of interfacial reactions by the use of chemical potential diagrams, J. Phase Equilibria 17 (1996) 278-289.
DOI: 10.1007/bf02665554
[36] F.J.J. van Loo, M.R. Rijnders, K.J. Rönkä, J.H. Gülpen, A.A. Kodentsov, Solid state diffusion and reactive phase formation, Solid State Ionics 95 (1997) 95-106.
[37] H. Yokokawa, Generalized chemical potential diagram and its applications to chemical reactions at interfaces between dissimilar materials, J. Phase Equilibria 20 (1999) 258-287.
[38] M.R. Rijnders, A.A. Kodentsov, J.A. van Beek, J. van den Akker, F.J.J. van Loo, Pattern formation in Pt-SiC diffusion couples, Solid State Ionics 95 (1997) 51-59.
[39] A.A. Kodentsov and F.J.J. van Loo, Metallization of SiC ceramics: Chemical aspects, in: High Temperature Materials Chemistry, K. E. Spear (Ed.), The Electrochemical Society, Inc., Pennington, New Jersey, Vol. 97-39, 1997, pp.468-471.
[40] A.A. Kodentsov, M.R. Rijnders, F.J.J. van Loo, Periodic pattern formation in solid state reactions related to the Kirkendall effect. Acta Mater. 46 (1998) 6521-6528.
[41] A.A. Kodentsov, M. van Dal, C. Cserháti, F.J.J. van Loo, Reactive phase formation in binary and ternary silicide systems. in: L. Maglio, F. d'Heurle (Eds.), Silicides-Fundamentals and Applications, World Scientific Ltd. Singapore, 2000, pp.187-218.
[42] A.A. Kodentsov, M.J.H. van Dal, C. Cserháti, A.M. Gusak, F.J.J. van Loo, Patterning in reactive diffusion, Defect Diffusion Forum 194-199 (2001)1491-1502.
[43] A.A. Kodentsov, F.J.J. van Loo, Periodic pattern formation in metal-ceramic reactions, Adv. Sci. Tech. 46 (2006)136 -145.
[44] R.L. Mehan, M.R. Jackson, A Study of solid metal/ceramic reactions, in: J. Pask, A. Evans (Eds.), Surface and Interfaces in Ceramic and Ceramic-Metal Systems, Plenum Press, New York, 1981, pp.513-523.
[45] R.C.J. Schiepers, J.A. van Beek, F.J.J. van Loo, G. de With, The interaction between SiC and Ni, Fe, (Fe,Ni) and steel: Morphology and kinetics, J. Eur. Ceram. Soc. 9 (1993) 211-218.
[46] J.H. Gülpen, A.A. Kodentsov, F.J.J. van Loo, Growth of silicides in Ni-Si and Ni-SiC bulk diffusion couples, Z. Metallkd. 86 (1995) 530-539.
[47] K. Bhanumurhy, R. Schmid-Fetzer, Experimental study of ternary Pd-Si-C phase equilibria and Pd/SiC interface reactions, Z. Metallkd. 87 (1996) 244-253.
[48] L. Klinger, I. Gotman, I. Gutman, A switch-over model of periodic structure formation in ternary diffusion couples, Scripta Mater. 45 (2001) 1221-1226.
[49] K. Osinski, A.W. Vriend, G.F. Bastin, F.J.J. van Loo, Periodic formation of FeSi bands in diffusion couples Fe(15wt%Si)-Zn, Z. Metallkd. 73 (1982) 258-261.
[50] M.R. Rijnders, F.J.J. van Loo, Aspects of periodic layer formation in Co2Si/Zn diffusion couples, Scripta Metall. Mater. 32 (1995)1931-1935.
[51] M.R. Rijnders, A.A. Kodentsov, Cs. Cserháti, J. van den Akker, F.J.J. van Loo, Periodic layer formation during solid state reactions, Defect Diffusion Forum 129-130 (1996) 253-266.
[52] S.F. Dunaev, S.A. Zver'kov, Influence of high pressure on the formation of periodic regular structures in multicomponent diffusion zones, J. Less-Comm. Met. 153 (1989) 143-150.
[53] A.A. Kodentsov, A. Paul, F.J.J. van Loo, Bifurcation of the Kirkendall plane and patterning in reactive diffusion, Z. Metallkd. 95 (2004) 258-260.
DOI: 10.3139/146.017946
[54] F.J.J. van Loo, B. Pieraggi, R.A. Rapp, Interface migration and the Kirkendall effect in diffusion-driven phase transformations, Acta Metall. Mater. 38 (1990) 1769-1779.
[55] B. Pieraggi, R.A. Rapp, F.J.J. van Loo, J.P. Hirth, Interfacial dynamics in diffusion-driven phase transformations, Acta Metall. Mater. 38 (1990) 1781-1788.
[56] F.J.J. van Loo, B. Pieraggi, Reaction and diffusion in multiphase systems: Phenomenology and frames, Mater. Sci. Forum 155-156 (1994) 307-316.
[57] G.F. Bastin, G.D. Rieck, Diffusion in the titanium-nickel system: I. Occurrence and growth of the various intermetallic compounds, Metall. Trans. 5 (1974) 1817-1826.
DOI: 10.1007/bf02644146
[58] M.J.H. van Dal, A.M. Gusak, C. Cserháti, A.A. Kodentsov, F.J.J. van Loo, Microstructural stability of the Kirkendall plane in solid-state diffusion, Phys. Rev. Lett., 86 (2001) 3352-3355.
[59] A. Paul, A.A. Kodentsov, M.J.H. van Dal, F.J.J. van Loo, The Kirkendall effect in multiphase diffusion, Acta Mater. 52 (2004) 623-630.
[60] A. Kodentsov, A. Paul, M.J.H. van Dal, Cs. Cserháti, A.M. Gusak, F.J.J. van Loo, On the spatial stability and bifurcation of the Kirkendall plane during solid-state interdiffusion, Crit. Rev. Solid State Mater. Sci. 33 (2008) 210-233.
[61] R.A. Swalin, Thermodynamics of Solids, second ed., John Wiley & Sons, Inc., New York, USA, (1972).
[62] L.S Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME, 175 (1948) 184-201.
[63] C. Matano, On the relation between the diffusion-coefficients and concentrations of solid metals (The Nickel-Copper system), Jap. J. Phys. 8 (1933) 109-113.
[64] F. Sauer, V. Freise, Diffusion in Binären Gemischen mit Volumenänderung, Z. Electrochem. 66 (1962) 353-363 (in German).
[65] M.J.H. van Dal, A.A. Kodentsov, F.J.J. van Loo, Formation of Co-Si intermetallics in bulk diffusion couples. Part II: Manifestations of the Kirkendall effect accompanying reactive diffusion, Intermetallics 9 (2001) 451-456.
[66] C. Wagner, The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems, Acta Metall. 17 (1969) 99-107.
[67] M.J.H. van Dal, D.G.G.M. Huibers, A.A. Kodentsov, F.J.J. van Loo, Formation of Co-Si intermetallics in bulk diffusion couples. Part I: Growth kinetics and mobilities of species in the silicide phases. Intermetallics 9 (2001) 409-421.
[68] G.F. Bastin, Diffusie in het Systeem Titaan-Nikkel, PhD thesis, Eindhoven, The Netherlands, 1972 (in Dutch).
[69] I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems II, J. Chem. Phys. 48 (1968)1695-1700.
DOI: 10.1063/1.1668896
[70] H. Malchow, H. Rosé, C. Sattler, Spatial and spatio-temporal reaction-diffusion patterns in heterogeneous media, J. Non-equilib. Thermodyn. 17 (1992) 41-52.
[71] A.N. Zaikin, A.M. Zhabotinsky, Concentration wave propagation in two-dimensional liquid-phase self-oscillating system, Nature 225 (1970) 535-537.
DOI: 10.1038/225535b0
[72] R. Kapral, Pattern formation in chemical systems, Physica D 86 (1995) 149-157.
[73] J.S. Kirkaldy, Spontaneous evolution of spatiotemporal patterns in materials, Rep. Prog. Phys. 55 (1992) 723-795.
[74] J.S. Kirkaldy, Spontaneous evolution of microstructure in materials, Metall. Trans. A 24A (1993) 1689-1721.
[75] C.S. Lim, H. Nickel, A. Naoumidis, E. Gyrmati, Interface structure and reaction kinetics between SiC and thick cobalt foils, J. Mat. Sci. 31 (1996) 4241-4247.
DOI: 10.1007/bf00356445
[76] W.F. Knippenberg, Growth phenomena in silicon carbide, Philips Res. Rep. 18 (1963) 161-274.
[77] W.J.J. Wakelkamp, Diffusion and Phase Relations in the Systems Ti-Si-C and Ti-Si-N, PhD thesis, The Netherlands, (1991).
[78] M. Paulasto, F.J.J. van Loo, J.K. Kivilahti, J. Physique IV 3 (1993) 1069-1072.
[79] S. Sambasivan, W.T. Petuskey, Phase chemistry in the Ti-Si-N system: Thermochemical review with phase stability diagrams, J. Mat. Res. 9 (1994) 2362-2369.
[80] M. Paulasto, J.K. Kivilahti, F.J.J. van Loo, Interfacial reactions in Ti/Si3N4 and TiN/Si diffusion couples, J. Appl. Phys. 77 (1995) 4412-4416.
DOI: 10.1063/1.359468
[81] J.C. Schuster, H. Nowotny, Silicon Nitride and Transition Metals: A Critical Evaluation of Existing Phase Diagram Data Supplemented by New Experimental Results, in: H. Bildstein (ed.), 11th International Plansee Seminar' 85, Reutte, Tirol, Austria, 1985, pp.899-911.
[82] S. Somia, M. Yoshimura, N. Shinohara, Reactions and phase relations in the system Si-Ti-N between 1400 and 1650 ºC under 1 atm N2, Rept. Res. Lab. Eng. Mater. Tokyo Inst. Technol. 6 (1984) 107-117.
[83] R. Beyers, R. Sinclair and M.E. Thomas, Phase equilibria in thin-film metallizations, J. Vac. Sci. Technol. B2 (1984) 781-784.
DOI: 10.1116/1.582879
[84] G.F. Bastin, H.J.M. Heijligers, J.F. Pinxter, Quantitative EPMA of nitrogen in Ti-N compounds, in: Microbeam Analysis-1988, D.E. Newburg (Ed.), San Francisco Press, Inc., 1988 pp.290-294.
[85] A.A. Kodentsov, J.K. Kivilahti, F.J.J. van Loo, Thermodynamic evaluation of solid-state reactions in which a volatile product is formed, Monatsh. Chem. 136 (2005) 1861-1869.
[86] K. Zeng, R. Schmid-Fetzer, Critical assessment and thermodynamic modelling of the Ti-N system, Z. Metallkd. 87 (1996) 540-554.
[87] E. Heikinheimo, A. Kodentsov, J.A. van Beek, J.T. Klomp, F.J.J. van Loo, Reactions in the systems Mo-Si3N4 and Ni-Si3N4, Acta Metall. Mater. 40 (1992) S111-S119.
[88] A.A. Kodentsov, J.K. Kivilahti, F.J.J. van Loo, The formation of nitride phases during diffusion bonding of Ni-Cr alloys with Si3N4-ceramics, High Temp. Mater. Sci. 34 (1995) 137-153.
[89] A.A. Kodentsov, J.H. Gülpen, Cs. Cserháti, J.K. Kivilahti, F.J.J. van Loo, High-temperature nitridation of Ni-Cr alloys, Metall. Mater. Trans. A 27A (1996) 59-69.
DOI: 10.1007/bf02647747
[90] E. Heikinheimo, I. Isomäki, A.A. Kodentsov, F.J.J. van Loo, Chemical interaction between Fe and silicon nitride ceramic, J. Eur. Ceram. Soc., 17 (1997) 25-31.
[91] A.H. Heuer, V.L.K. Lou, Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high-temperature decomposition and oxidation, J. Am. Cram. Soc. 73 (1990) 2785-3128.
[92] R. Metselaar, J.A. van Beek, A.A. Kodentsov, F.J.J. van Loo, Carbothermal processing of silicon carbide ceramics, in: Advanced Materials'93, N. Mizutani, K. Akashi, T. Kimura, S. Ohno (Eds.), Trans. Mat. Res. Soc. Jpn., Elsevier, 1994, pp.809-804.