Oxidation Behavior of Silicides

Article Preview

Abstract:

The oxidation behavior of Mo, Nb, and Ti-silicides has received significant attention in past few decades for their potential to be used as high temperature structural materials. These Si-bearing intermetallic alloys have the ability to form an oxide scale containing SiO2, which is protective if formed as a continuous and impervious layer, so that the ingress of oxygen from atmosphere to the underneath alloy is restricted. To form a continuous and stable SiO2 scale, it is important to have sufficient activity of Si along with thermodynamic and kinetic conditions favoring its growth in comparison to that of oxides of other alloying elements. MoSi2 has superior oxidation resistance compared to that of Mo3Si or Mo5Si3, because of its higher Si content. Furthermore, a continuous film of SiO2 is able to form at temperatures in the range of 800-1700 oC on MoSi2 due to vaporization of MoO3, but not on NbSi2 or TiSi2 due to competitive growth of Nb2O5 or TiO2, respectively. During past two decades, a significant effort has been devoted to development of Mo-Si-B alloys containing Mo-rich solid solution, Mo3Si and Mo5SiB2 as constituent phases, due to their ability to form a protective borosilicate scale. The presence of B2O3 contributes to fluidity of borosilicate scale, thereby contributing to closure of porosities. Efforts have been also made to develop multicomponent Nb-silicide based alloys with optimum combination of mechanical properties and high temperature oxidation resistance with limited success. There have been efforts to develop silicide based coatings for protection oxidation for Mo-rich Mo-Si-B alloys and Nb-Si based ternary or multicomponent alloys with inadequate oxidation resistance. Oxidation behavior of selected silicides with potential for structural application, along with mechanisms for protection against oxidation has been reviewed and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 21)

Pages:

127-156

Citation:

Online since:

March 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Schlichting, Molybdenum Disilicide as a Component in Modern High-Temperature Solid Solutions, High Temp. High Press. 10 (1978) 241-69.

Google Scholar

[2] A.K. Vasudevan and J. J. Petrovic, A comparative overview of molybdenum disilicide composites, Mater. Sci. Eng. A. 155 (1992) 1-17.

Google Scholar

[3] D.A. Berztiss, R.R. Cerchiara, E.A. Gulbransen, F.S. Pettit, and G.H. Meier. 1992. Oxidation of MoSi2 and comparison with other silicide materials, Mater. Sci. Eng. A. 155 (1992) 165-81.

DOI: 10.1016/0921-5093(92)90324-t

Google Scholar

[4] R. Mitra, Mechanical behaviour and oxidation resistance of structural silicides, Inter. Mater. Rev. 51 (2006) 13-64.

Google Scholar

[5] R. Mitra, Structural Intermetallics and Intermetallic Matrix Composites, IIT Kharagpur Research Monograph Series, CRC Press - Taylor and Francis Group, Boca Raton, Florida, USA, Published on April 28, (2015).

DOI: 10.1201/b18434-1

Google Scholar

[6] J. Doychak, Oxidation behavior of high temperature intermetallics, in: J. H. Westbrook and R. L. Fleischer (Eds.), Intermetallic Compounds and Practice, Vol. 1. Principles, John Wiley and Sons, Chichester, England, 1995, pp.977-1015.

Google Scholar

[7] G.H. Meier and F. S. Pettit, The oxidation behavior of intermetallic compounds, Mater. Sci. Eng. A. 153 (1992) 548-60.

Google Scholar

[8] G.H. Meier, and F. S. Pettit, High-Temperature Oxidation and Corrosion of Intermetallic Compounds, Mater. Sci. Technol. 8 (1992) 331-38.

Google Scholar

[9] I. Barin, Thermochemical data of pure substances, Vols. 1 and 2; VCH, Weinheim, Germany, VCH, (1989).

Google Scholar

[10] U.K. Chatterjee, S.K. Bose and S.K. Roy, Environmental degradation of metals, Marcel Dekker, Inc., New York, 2001, p.283.

Google Scholar

[11] R. Mitra and V. V. Rama Rao, Elevated-temperature oxidation behavior of titanium silicide and titanium silicide based alloy and composite, Metall. Mater. Trans. A. 29 (1998) 1665-75.

DOI: 10.1007/s11661-998-0089-y

Google Scholar

[12] S.V. Raj, An evaluation of the properties of Cr3Si alloyed with Mo, Mater. Sci. Eng. A. 201 (1995) 229-41.

Google Scholar

[13] J.M. Nesbitt and C.E. Lowell, High Temperature Oxidation of Intermetallics. In: High temperature Ordered Intermetallic Alloys V, MRS Symp. Proc. 288 (1993)107-118.

Google Scholar

[14] R. Mitra and V.V. Rama Rao, Effect of minor alloying with Al on oxidation behaviour of MoSi2 at 1200°C, Mater. Sci. Eng. A. 260 (1999) 146-60.

DOI: 10.1016/s0921-5093(98)00972-1

Google Scholar

[15] F.A. Rioult, S.D. Imhoff, R. Sakidja, J.H. Perepezko, Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale, Acta Mater., 57 (2009) 4600-13.

DOI: 10.1016/j.actamat.2009.06.036

Google Scholar

[16] N.B. Pilling and R.E. Bedworth, The oxidation of metals at high temperatures, J. Inst. Met. 29 (1923) 529-91.

Google Scholar

[17] R. Mitra, Rohit Khanna, and V. V. Rama Rao, Microstructure, mechanical properties and oxidation behavior of a multiphase (Mo,Cr)(Si,Al)2 intermetallic alloy–SiC composite processed by reaction hot pressing, Mater. Sci. Eng. A. 382 (2004) 150-61.

DOI: 10.1016/j.msea.2004.04.063

Google Scholar

[18] S. Paswan, R. Mitra, and S. K. Roy, Nonisothermal and Cyclic Oxidation Behavior of Mo-Si-B and Mo-Si-B-Al Alloys, Metall. Mater. Trans. A. 40 (2009) 2644-58.

DOI: 10.1007/s11661-009-9946-6

Google Scholar

[19] T.C. Chou and T. G. Nieh, Pesting of the high-temperature intermetallic MoSi2, JOM 45 (1993) 15-21.

DOI: 10.1007/bf03222509

Google Scholar

[20] J.H. Westbrook and D.L. Wood, PEST, degradation in beryllides, silicides, aluminides, and related compounds. J. Nucl. Mater. 12 (1964) 208-15.

DOI: 10.1016/0022-3115(64)90142-4

Google Scholar

[21] J.R. Lewis, Further evaluation of beryllides, J. Metals 13 (1961) 829-82.

Google Scholar

[22] T.C. Chou, T.G. Nieh, and J. Wadsworth, Stability of ZrBe13, Nb2Be17, and NiBe Intermetallics during Intermediate Temperature Oxidation, Scripta Metall. Mater. 27 (1992) 897-902.

DOI: 10.1016/0956-716x(92)90413-9

Google Scholar

[23] V.K. Tolpygo and H. J. Grabke, Mechanism of the Intergranular Disintegration (Pest) of the Intermetallic Compound NbAl3, Scripta Metall. Mater. 28 (1993) 747-52.

DOI: 10.1016/0956-716x(93)90047-v

Google Scholar

[24] C.G. Mckamey, P.F. Tortorelli, J.H. Devan, and C.A. Carmichael, A Study of Pest Oxidation in Polycrystalline MoSi2, J. Mater. Res. 7 (1992) 2747-55.

DOI: 10.1557/jmr.1992.2747

Google Scholar

[25] R. Mitra, V.V. Rama Rao and Y.R. Mahajan, Oxidation behaviour of reaction hot pressed MoSi2/SiC composites at 500 °C, Mater. Sci. Tech. 13(5) (1997) 415-419.

DOI: 10.1179/mst.1997.13.5.415

Google Scholar

[26] S. Paswan, R. Mitra, and S. K. Roy, Oxidation behaviour of the Mo-Si-B and Mo-Si-B-Al alloys in the temperature range of 700-1300 oC, Intermetallics 15 (2007) 1217-27.

DOI: 10.1016/j.intermet.2007.02.012

Google Scholar

[27] T. B. Massalski, H. Okamato, P. R. Subramanian and L. Kacprazak (eds.), Binary alloy phase diagrams, Vol. 2, ASM, Materials Park, OH, p.1333, p.1631, p.2054, (1987).

Google Scholar

[28] K. Yanagihara, T. Maruyama, and K. Nagata, Effect of third elements on the pesting suppression of Mo-Si-X intermetallics (X=Al, Ta, Ti, Zr and Y), Intermetallics 4 (1996) S133-S139.

DOI: 10.1016/0966-9795(96)00019-2

Google Scholar

[29] Andrew Mueller, Ge Wang, Robert A. Rapp, Edward L. Courtright, and Thomas A. Kircher, Oxidation behavior of tungsten and germanium-alloyed molybdenum disilicide coatings, Mater. Sci. Eng. A. 155 (1992) 199-207.

DOI: 10.1016/0921-5093(92)90326-v

Google Scholar

[30] B.V. Cockeram, Growth and oxidation resistance of boron-modified and germanium-duped silicide diffusion coatings formed by the halide-activated pack cementation method, Surf. Coat. Technol. 76 (1995) 20-27.

DOI: 10.1016/0257-8972(95)02492-1

Google Scholar

[31] P.J. Meschter, Low-Temperature Oxidation of Molybdenum Disilicide, Metall. Trans. A. 23 (1992) 1763-72.

DOI: 10.1007/bf02804369

Google Scholar

[32] C.D. Wirkus and D.R. Wilder, High-Temperature Oxidation of Molybdenum Disilicide, J. Am. Ceram. Soc. 49 (1966) 173-77.

Google Scholar

[33] K. Yanagihara, T. Maruyama, and K. Nagata, High-Temperature Oxidation of Mo-Si-X Intermetallics (X=Al, Ti, Ta, Zr and Y), Intermetallics 3 (1995) 243-51.

DOI: 10.1016/0966-9795(95)98935-2

Google Scholar

[34] A. Stergiou, P. Tsakiropoulos, and A. Brown, The intermediate and high temperature oxidation behavior of Mo(Si1-xAlx)2 intermetallic alloys, Intermetallics, 5(1) (1997) 69-81.

DOI: 10.1016/s0966-9795(96)00068-4

Google Scholar

[35] R. Mitra, Rohit Khanna, and V. V. Rama Rao, Microstructure, mechanical properties and oxidation behavior of a multiphase (Mo,Cr)(Si,Al)2 intermetallic alloy–SiC composite processed by reaction hot pressing, Mater. Sci. Eng. A. 382 (2004) 150-61.

DOI: 10.1016/j.msea.2004.04.063

Google Scholar

[36] J. Cook, A. Khan, E. Lee, and R. Mahapatra, Oxidation of MoSi2-based composites, Mater. Sci. Eng. A. 155 (1992) 183-98.

Google Scholar

[37] K. Natesan and S. C. Deevi, Oxidation behavior of molybdenum silicides and their composites, Intermetallics 8 (2000) 1147-58.

DOI: 10.1016/s0966-9795(00)00060-1

Google Scholar

[38] M.G. Hebsur, Development and characterization of SiC(f)/MoSi2–Si3N4(p) hybrid composites, Mater. Sci. Eng. A. 261 (1999) 24-37.

DOI: 10.1016/s0921-5093(98)01046-6

Google Scholar

[39] M.G. Hebsur and M. V. Nathal. 1997. Second Int. Symp. on Structural intermetallics. Seven Springs Mountain Resort, Champion, PA, USA, September 1997, in: M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle, R. Wagner and M. Yamaguchi (Eds.), Structural Intermetallics 1997, TMS, Warredale, PA, 1997, pp.949-958.

Google Scholar

[40] W. Kowalik, Robert, and Mohan G. Hebsur, Cyclic oxidation study of MoSi2–Si3N4 base composites, Mater. Sci. Eng. A. 261 (1999) 300-03.

DOI: 10.1016/s0921-5093(98)01109-5

Google Scholar

[41] M.K. Meyer and M. Akinc, Isothermal oxidation behavior of Mo-Si-B intermetallics at 1450 °C, J. Am. Ceram. Soc. 79 (1996) 2763-66.

DOI: 10.1111/j.1151-2916.1996.tb09046.x

Google Scholar

[42] H. Nowotny, E. Dimakopoulou and H. Kudielka, Untersuchungen in den Dreistoffsystemen: Molybdän-in-Silizium-Bor, Wolfram-Silizium-Bor und in dem System: VSi2-TaSi2 Monatsh. Chem. 88 (1957) 180-192.

DOI: 10.1007/bf00901624

Google Scholar

[43] A.J. Thom, E. Summers, and M. Akinc, Oxidation behavior of extruded Mo5Si3Bx-MoSi2-MoB intermetallics from 600 degrees-1600 °C, Intermetallics 10 (2002) 555-70.

DOI: 10.1016/s0966-9795(02)00034-1

Google Scholar

[44] N. Nomura, T. Suzuki, K. Yoshimi, and S. Hanada, Microstructure and oxidation resistance of a plasma sprayed Mo-Si-B multiphase alloy coating, Intermetallics 11 (2003) 735-42.

DOI: 10.1016/s0966-9795(03)00069-4

Google Scholar

[45] S. Ochiai, Improvement of the oxidation-proof property and the scale structure of Mo3Si intermetallic alloy through the addition of chromium and aluminum elements, Intermetallics 14 (2006) 1351-57.

DOI: 10.1016/j.intermet.2006.01.059

Google Scholar

[46] Jihan Zhou, Matthew Taylor, Georgian A. Melinte, Ashwin J. Shahani, Chamila C. Dharmawardhana, Hendrik Heinz, Peter W. Voorhees, John H. Perepezko, Karen Bustillo, Peter Ercius & Jianwei Miao, Quantitative characterization of high temperature oxidation using electron tomography and energy dispersive X-ray spectroscopy, Sci. Rep. 8 (2018) 10239:1-8.

DOI: 10.1038/s41598-018-28348-3

Google Scholar

[47] A. Gulec, X.X. Yu, M. Taylor, A. Yoon, J.M. Zuo, J.H. Perepezko, and L.D. Marks, Early Stage of Oxidation of Mo3Si by In Situ Environmental Transmission Electron Microscopy, Corrosion 74(3) (2018) 288-294.

DOI: 10.5006/2564

Google Scholar

[48] K. Yoshimi, S. Nakatani, T. Suda, S. Hanada, H. Habazaki, Oxidation behavior of Mo5SiB2-based alloy at elevated temperatures, Intermetallics 10 (2002) 407-414.

DOI: 10.1016/s0966-9795(02)00013-4

Google Scholar

[49] Sharma Paswan, R. Mitra, and S. K. Roy, Isothermal oxidation behaviour of Mo–Si–B and Mo–Si–B–Al alloys in the temperature range of 400–800 °C, Mater. Sci. Eng. A 424 (2006) 251-65.

DOI: 10.1016/j.msea.2006.03.014

Google Scholar

[50] J. Das, B. Roy, N.K. Kumar, R. Mitra, High temperature oxidation response of Al/Ce doped Mo-Si-B composites, Intermetallics, 83 (2017) 101-109.

DOI: 10.1016/j.intermet.2016.12.013

Google Scholar

[51] V. Supatarawanich, D.R. Johnson, and C.T. Liu, Oxidation behavior of multiphase Mo-Si-B alloys, Intermetallics 12 (2004) 721-25.

DOI: 10.1016/j.intermet.2004.02.011

Google Scholar

[52] J.S. Park, R. Sakidja, and J. H. Perepezko, Coating designs for oxidation control of Mo-Si-B alloys, Scripta Mater. 46 (2002) 765-70.

DOI: 10.1016/s1359-6462(02)00070-2

Google Scholar

[53] M.G. Mendiratta, T. A. Parthasarathy, and D. M. Dimiduk, Oxidation behavior of alpha Mo-Mo3Si-Mo5SiB2 (T2) three phase system, Intermetallics 10 (2002) 225-32.

DOI: 10.1016/s0966-9795(01)00118-2

Google Scholar

[54] V. Supatarawanich, D.R. Johnson, and C.T. Liu, Effects of microstructure on the oxidation behavior of multiphase Mo–Si–B alloys, Mater. Sci. Eng. A 344 (2003) 328-39.

DOI: 10.1016/s0921-5093(02)00446-x

Google Scholar

[55] Pranab Mandal, Andrew J. Thom, Matthew J. Kramer, Vikas Behrani, and Mufit Akinc, Oxidation behavior of Mo–Si–B alloys in wet air, Mater. Sci. Eng. A 371 (2004) 335-42.

DOI: 10.1016/j.msea.2003.12.025

Google Scholar

[56] B. Roy, J. Das, and R. Mitra, Transient stage oxidation behavior of Mo76Si14B10 alloy at 1150 °C, Corros. Sci. 68 (2013) 231-37.

DOI: 10.1016/j.corsci.2012.11.021

Google Scholar

[57] Fang Wang, Aidang Shan, Xianping Dong, Jiansheng Wu, Oxidation behavior of Mo–12.5Si–25B alloy at high temperature, J. Alloys Compd. 459(1-2) (2008) 362-68.

DOI: 10.1016/j.jallcom.2007.04.269

Google Scholar

[58] D. A. Helmick, G. H. Meier, F. S. Pettit, The Development of Protective Borosilicate Layers on a Mo-3Si-1B (Weight Percent) Alloy Metall. Mater. Trans. A. 36A (2005) 3371-83.

DOI: 10.1007/s11661-005-0011-9

Google Scholar

[59] Kyosuke Yoshimi, Shinya Nakatani, Shuji Hanada, Se-Hyun Ko, and Yong-Ho Park, Synthesis and high temperature oxidation of Mo–Si–B–O pseudo in situ composites, Sci. Technol. Adv. Mater. 3 (2002) 181-92.

DOI: 10.1016/s1468-6996(02)00015-3

Google Scholar

[60] S. Burk, B. Gorr, V.B. Trindade, and H.-J. Christ, Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale, Oxid. Met. 73 (2010) 163-181.

DOI: 10.1007/s11085-009-9175-9

Google Scholar

[61] N.K. Kumar, B. Roy, R. Mitra, J. Das, Improvement of oxidation resistance of arc-melted Mo76Si14B10 by microstructure control upon minor Fe addition, Intermetallics 88 (2017) 28-30.

DOI: 10.1016/j.intermet.2017.05.004

Google Scholar

[62] R. Sakidja, F. Rioult, J. Werner, J.H. Perepezko, Aluminum pack cementation of Mo–Si–B alloys, Scripta Mater. 55(10) (2006) 903-906.

DOI: 10.1016/j.scriptamat.2006.07.044

Google Scholar

[63] R. Sakidja, J.S. Park, J. Hamann, J.H. Perepezko, Synthesis of oxidation resistant silicide coatings on Mo-Si-B alloys, Scripta Mater. 53(6) (2005) 723-728.

DOI: 10.1016/j.scriptamat.2005.05.015

Google Scholar

[64] Sanjib Majumdar, Isothermal and cyclic oxidation resistance of pack siliconized Mo–Si–B alloy, Appl. Surf. Sci. 414 (2017) 18–24.

DOI: 10.1016/j.apsusc.2017.03.300

Google Scholar

[65] Annika Lange, Reinhold Braun, Magnetron-sputtered oxidation protection coatings for Mo–Si–B alloys, Corros. Sci. 84 (2014) 74-84.

DOI: 10.1016/j.corsci.2014.03.013

Google Scholar

[66] M. E. Schlesinger, H. Okamoto, A. B. Gokhale and R. Abbaschian, The Nb-Si (Niobium-Silicon) system, J. Phase Equil. 14(4) (1993) 502-509.

DOI: 10.1007/bf02671971

Google Scholar

[67] S.J. Balsone, B. P. Bewlay, M. R. Jackson, P. R. Subramanian, J.-C. Zhao, A. Chatterjee and T. M. Heffernan, Materials beyond superalloys: exploiting high-temperature composites, Report No. 2001CRD098, GE Research and Development, July (2001).

Google Scholar

[68] B.P. Bewlay, M.R. Jackson, J.C. Zhao, and P.R. Subramanian, A review of very-high-temperature Nb-silicide-based composites, Metall. Mater. Trans. A. 34 (2003) 2043-52.

DOI: 10.1007/s11661-003-0269-8

Google Scholar

[69] B.P. Bewlay, M. R. Jackson, J. C. Zhao and P. R. Subramanian, A review of very high-temperature Nb–silicide based composites, Report No. 2002GRC172, GE Research and Development, September (2002).

Google Scholar

[70] B.P. Bewlay, M. R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta, and J.J. Lewandowski, Ultrahigh-temperature Nb-silicide-based composites, MRS Bull. 28 (2003) 646-53.

DOI: 10.1557/mrs2003.192

Google Scholar

[71] Y. Liu, A.J. Thom, M.J. Kramer and M. Akinc, in: T. S. Srivatsan and V. A. Ravi (Eds.), Processing and fabrication of advanced materials for high temperature applications, TMS, Warrendale, PA, 2003, pp.258-271.

Google Scholar

[72] M.R. Jackson, R.G. Rowe and D.W. Skelly, in: High-temperature ordered intermetallic alloys VI. Mater. Res. Soc. Symp. Proc., vol. 364, 1995, pp.1339-44.

Google Scholar

[73] D.L. Douglass, The thermal expansion of niobium pentoxide and its effect on the spalling of niobium oxidation films, J. Less-Common Met. 5(2) (1963) 151-157.

DOI: 10.1016/0022-5088(63)90008-0

Google Scholar

[74] T. Murakami, C.N. Xu, A. Kitahara, M. Kawahara, Y. Takahashi, H. Inui, and M. Yamaguchi, Microstructure, mechanical properties and oxidation behavior of powder compacts of the Nb-Si-B system prepared by spark plasma sintering, Intermetallics 7 (1999) 1043-48.

DOI: 10.1016/s0966-9795(99)00017-5

Google Scholar

[75] B.P. Bewlay, M. R. Jackson and M. F. X. Gigliotti,  Niobium Silicide High Temperature In-Situ Composites, in: R. L. Fleischer and J. H. Westbrook (Eds.), Intermetallic compounds – principles and practice – Vol. 3, John Wiley, Chichester, 2001, pp.541-560.

DOI: 10.1002/0470845856.ch26

Google Scholar

[76] E.S.K. Menon, and M.G. Mendiratta, High Temperature oxidation in multicomponent Nb alloys, E. Mater. Sci. Forum 475–476 (2005) 717-20.

DOI: 10.4028/www.scientific.net/msf.475-479.717

Google Scholar

[77] E.S.K. Menon, M.G. Mendiratta and D.M. Dimiduk, in: K. J. Hemker, D. M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J. M. Larsen, V. K. Sikka, M. Thomas and J. D. Whittenberger (Eds.), Structural intermetallics 2001, TMS, Warrendale, PA, 2001, pp.591-600.

Google Scholar

[78] K.S. Chan, Cyclic oxidation response of multiphase niobium-based alloys, Metall. Mater. Trans. A. 35 (2004) 589-97.

DOI: 10.1007/s11661-004-0370-7

Google Scholar

[79] K. Chattopadhyay, R. Mitra, and K. K. Ray, Nonisothermal and isothermal oxidation behavior of Nb-Si-Mo alloys, Metall. Mater. Trans. A. 39 (2008) 577-92.

DOI: 10.1007/s11661-007-9398-9

Google Scholar

[80] N. Esparza, V. Rangel, A. Gutierrez, B. Arellano and S. K. Varma, A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb–Cr–Si system, Mater. High Temp. 33(2) (2016) 105-114.

DOI: 10.1179/1878641315y.0000000012

Google Scholar

[81] Brendan Voglewede, Victoria R. Rangel, S.K. Varma, The effects of uncommon silicides on the oxidation behavior of alloys from the Nb–Cr–Si system, Corr. Sci. 61 (2012) 123-133.

DOI: 10.1016/j.corsci.2012.04.029

Google Scholar

[82] S.J. Balsone, B. P. Bewlay, M. R. Jackson, P. R. Subramanian, J.-C. Zhao, A. Chatterjee and T. M. Heffernan, in: K. J. Hemker, D. M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J. M. Larsen, V. K. Sikka, M. Thomas and J. D. Whittenberger (Eds.), Proc. of the 2001 Intermetallics Symposium on Structural intermetallics, 99. TMS, Warrendale, PA, 2001, pp.99-108.

Google Scholar

[83] B.P. Bewlay, C.L. Briant, M.R. Jackson, and P.R. Subramanian, Recent advances in Nb-silicide in-situ composites, G. Kneringer, P. Rodhammer and H. Wildner, Plansee Holding AG, Reutte (Eds.), 15th International Plansee Seminar, 2001, Vol. 1, pp.404-419.

Google Scholar

[84] A. Vazquez, S.K. Varma, High-temperature oxidation behavior of Nb–Si–Cr alloys with Hf additions, J. Alloys Compd. 509 (2011) 7027–7033.

DOI: 10.1016/j.jallcom.2011.02.174

Google Scholar

[85] H.R. Jiang, L.Y. Niu, W.J. Xi, W.S. Ma, L. Zhang, Influence of Ti addition on high temperature oxidation resistance of Nb-based alloys, Trans. Nonferr. Met. Soc. China 24 (8) 2044–(2049).

Google Scholar

[86] K. Zelenitsas, P. Tsakiropoulos, Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800 ◦C, Mater. Sci. Eng. A 416 (2006) 269–280.

DOI: 10.1016/j.msea.2005.10.017

Google Scholar

[87] B.P. Bewlay, R. DiDomizio, P.R. Subramanian, V. Supatarawanich, J. D. Rigney, R. Darolia, US Patent No. 2008/0142122A1, June 19, (2008).

Google Scholar

[88] Wan Wang, Chungen Zhou, Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb-Si based alloy, Corros. Sci. 110 (2016) 114-122.

DOI: 10.1016/j.corsci.2016.04.026

Google Scholar

[89] P. Zhang, X.P. Guo, Effect of Al content on the structure and oxidation resistance of Y and Al modified silicide coatings prepared on Nb-Ti-Si based alloy, Corros. Sci. 71 (2013) 10–19.

DOI: 10.1016/j.corsci.2013.01.010

Google Scholar

[90] P. Zhang, X.P. Guo, Y and Al modified silicide coatings on an Nb-Ti-Si based ultrahigh temperature alloy prepared by pack cementation process, Surf. Coat. Technol. 206 (2011) 446–454.

DOI: 10.1016/j.surfcoat.2011.07.056

Google Scholar

[91] P. Zhang, X.P. Guo, A comparative study of two kinds of Y and Al modified silicide coatings on an Nb-Ti-Si based alloy prepared by pack cementation technique, Corros. Sci. 53 (2011) 4291–4299.

DOI: 10.1016/j.corsci.2011.08.040

Google Scholar

[92] P. Zhang, X.P. Guo, Improvement in oxidation resistance of silicide coating on an Nb-Ti-Si based ultrahigh temperature alloy by second aluminizing treatment, Corros. Sci. 91 (2015) 101–107.

DOI: 10.1016/j.corsci.2014.11.009

Google Scholar

[93] W. Wang, B.Y. Zhang, C.G. Zhou, Formation and oxidation resistance of Hf and Al modified silicide coating on Nb-Si based alloy, Corros. Sci. 86 (2014) 304–309.

DOI: 10.1016/j.corsci.2014.06.011

Google Scholar

[94] Y.T. Liu, X.P. Guo, Microstructure and growth kinetics of Ce and Y jointly modified silicide coatings for Nb-Ti-Si based ultrahigh temperature alloy, Prog. Nat. Sci.: Mater. Int. 23 (2013) 190–197.

DOI: 10.1016/j.pnsc.2013.02.003

Google Scholar

[95] P.J Meschter, D.S. Schwartz, Silicide-matrix materials for high-temperature applications, JOM 41 (1989) 52-55.

DOI: 10.1007/bf03220384

Google Scholar

[96] R. Rosenkranz, G. Frommeyer, and W. Smarsly, Microstructures and properties of high melting point intermetallic Ti5Si3 and TiSi2 compounds, Mater. Sci. Eng. A 152 (1992) 288-94.

DOI: 10.1016/0921-5093(92)90081-b

Google Scholar

[97] A.J. Thom, Y. Kim and M. Akinc, Effect of Processing on Oxidation of Ti5Si3, in: High-Temperature Ordered Intermetallic Alloys V, Mater. Res. Soc. Symp. Proc. Vol. 288, 1993, pp.1037-42.

Google Scholar

[98] R. Mitra, and V.V. Rama Rao, Elevated-temperature oxidation behavior of titanium silicide and titanium silicide based alloy and composite. Metall. Mater. Trans. A. 29 (1998) 1665-75.

DOI: 10.1007/s11661-998-0089-y

Google Scholar

[99] A. Rahmel and P.J. Spencer, Thermodynamic aspects of TiAl and TiSi2 oxidation: the Al-Ti-O and Si-Ti-O phase diagrams, Oxid. Met. 35 (1–2) (1991) 53-68.

DOI: 10.1007/bf00666500

Google Scholar

[100] A.J. Thom, Y. Kim, M. Akinc, Effect of processing on oxidation of titanium silicide (Ti5Si3), High-Temperature Ordered Intermetallic Alloys V, Materials Research Society Symposium Proceedings 288 (1993) 1037-1042.

Google Scholar

[101] S. Taniguchi, T. Minamida, T. Shibata, Oxidation behavior of Ti5Si3 at temperatures between 1400 and 1700 K, Mater. Sci. Forum 251-254 (1997) 227-234.

DOI: 10.4028/www.scientific.net/msf.251-254.227

Google Scholar

[102] J.J. Williams, M. Akinc, Oxidation Resistance of Ti5Si3 and Ti5Si3Zx at 1000 oC (Z = C, N, or O), Oxid. Met. 58 (2002) 57-71.

Google Scholar