p.1
p.29
p.85
p.127
p.157
Oxidation Behavior of Silicides
Abstract:
The oxidation behavior of Mo, Nb, and Ti-silicides has received significant attention in past few decades for their potential to be used as high temperature structural materials. These Si-bearing intermetallic alloys have the ability to form an oxide scale containing SiO2, which is protective if formed as a continuous and impervious layer, so that the ingress of oxygen from atmosphere to the underneath alloy is restricted. To form a continuous and stable SiO2 scale, it is important to have sufficient activity of Si along with thermodynamic and kinetic conditions favoring its growth in comparison to that of oxides of other alloying elements. MoSi2 has superior oxidation resistance compared to that of Mo3Si or Mo5Si3, because of its higher Si content. Furthermore, a continuous film of SiO2 is able to form at temperatures in the range of 800-1700 oC on MoSi2 due to vaporization of MoO3, but not on NbSi2 or TiSi2 due to competitive growth of Nb2O5 or TiO2, respectively. During past two decades, a significant effort has been devoted to development of Mo-Si-B alloys containing Mo-rich solid solution, Mo3Si and Mo5SiB2 as constituent phases, due to their ability to form a protective borosilicate scale. The presence of B2O3 contributes to fluidity of borosilicate scale, thereby contributing to closure of porosities. Efforts have been also made to develop multicomponent Nb-silicide based alloys with optimum combination of mechanical properties and high temperature oxidation resistance with limited success. There have been efforts to develop silicide based coatings for protection oxidation for Mo-rich Mo-Si-B alloys and Nb-Si based ternary or multicomponent alloys with inadequate oxidation resistance. Oxidation behavior of selected silicides with potential for structural application, along with mechanisms for protection against oxidation has been reviewed and discussed.
Info:
Periodical:
Pages:
127-156
Citation:
Online since:
March 2019
Authors:
Price:
Сopyright:
© 2019 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] J. Schlichting, Molybdenum Disilicide as a Component in Modern High-Temperature Solid Solutions, High Temp. High Press. 10 (1978) 241-69.
[2] A.K. Vasudevan and J. J. Petrovic, A comparative overview of molybdenum disilicide composites, Mater. Sci. Eng. A. 155 (1992) 1-17.
[3] D.A. Berztiss, R.R. Cerchiara, E.A. Gulbransen, F.S. Pettit, and G.H. Meier. 1992. Oxidation of MoSi2 and comparison with other silicide materials, Mater. Sci. Eng. A. 155 (1992) 165-81.
[4] R. Mitra, Mechanical behaviour and oxidation resistance of structural silicides, Inter. Mater. Rev. 51 (2006) 13-64.
[5] R. Mitra, Structural Intermetallics and Intermetallic Matrix Composites, IIT Kharagpur Research Monograph Series, CRC Press - Taylor and Francis Group, Boca Raton, Florida, USA, Published on April 28, (2015).
DOI: 10.1201/b18434-1
[6] J. Doychak, Oxidation behavior of high temperature intermetallics, in: J. H. Westbrook and R. L. Fleischer (Eds.), Intermetallic Compounds and Practice, Vol. 1. Principles, John Wiley and Sons, Chichester, England, 1995, pp.977-1015.
[7] G.H. Meier and F. S. Pettit, The oxidation behavior of intermetallic compounds, Mater. Sci. Eng. A. 153 (1992) 548-60.
[8] G.H. Meier, and F. S. Pettit, High-Temperature Oxidation and Corrosion of Intermetallic Compounds, Mater. Sci. Technol. 8 (1992) 331-38.
[9] I. Barin, Thermochemical data of pure substances, Vols. 1 and 2; VCH, Weinheim, Germany, VCH, (1989).
[10] U.K. Chatterjee, S.K. Bose and S.K. Roy, Environmental degradation of metals, Marcel Dekker, Inc., New York, 2001, p.283.
[11] R. Mitra and V. V. Rama Rao, Elevated-temperature oxidation behavior of titanium silicide and titanium silicide based alloy and composite, Metall. Mater. Trans. A. 29 (1998) 1665-75.
[12] S.V. Raj, An evaluation of the properties of Cr3Si alloyed with Mo, Mater. Sci. Eng. A. 201 (1995) 229-41.
[13] J.M. Nesbitt and C.E. Lowell, High Temperature Oxidation of Intermetallics. In: High temperature Ordered Intermetallic Alloys V, MRS Symp. Proc. 288 (1993)107-118.
[14] R. Mitra and V.V. Rama Rao, Effect of minor alloying with Al on oxidation behaviour of MoSi2 at 1200°C, Mater. Sci. Eng. A. 260 (1999) 146-60.
[15] F.A. Rioult, S.D. Imhoff, R. Sakidja, J.H. Perepezko, Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale, Acta Mater., 57 (2009) 4600-13.
[16] N.B. Pilling and R.E. Bedworth, The oxidation of metals at high temperatures, J. Inst. Met. 29 (1923) 529-91.
[17] R. Mitra, Rohit Khanna, and V. V. Rama Rao, Microstructure, mechanical properties and oxidation behavior of a multiphase (Mo,Cr)(Si,Al)2 intermetallic alloy–SiC composite processed by reaction hot pressing, Mater. Sci. Eng. A. 382 (2004) 150-61.
[18] S. Paswan, R. Mitra, and S. K. Roy, Nonisothermal and Cyclic Oxidation Behavior of Mo-Si-B and Mo-Si-B-Al Alloys, Metall. Mater. Trans. A. 40 (2009) 2644-58.
[19] T.C. Chou and T. G. Nieh, Pesting of the high-temperature intermetallic MoSi2, JOM 45 (1993) 15-21.
DOI: 10.1007/bf03222509
[20] J.H. Westbrook and D.L. Wood, PEST, degradation in beryllides, silicides, aluminides, and related compounds. J. Nucl. Mater. 12 (1964) 208-15.
[21] J.R. Lewis, Further evaluation of beryllides, J. Metals 13 (1961) 829-82.
[22] T.C. Chou, T.G. Nieh, and J. Wadsworth, Stability of ZrBe13, Nb2Be17, and NiBe Intermetallics during Intermediate Temperature Oxidation, Scripta Metall. Mater. 27 (1992) 897-902.
[23] V.K. Tolpygo and H. J. Grabke, Mechanism of the Intergranular Disintegration (Pest) of the Intermetallic Compound NbAl3, Scripta Metall. Mater. 28 (1993) 747-52.
[24] C.G. Mckamey, P.F. Tortorelli, J.H. Devan, and C.A. Carmichael, A Study of Pest Oxidation in Polycrystalline MoSi2, J. Mater. Res. 7 (1992) 2747-55.
[25] R. Mitra, V.V. Rama Rao and Y.R. Mahajan, Oxidation behaviour of reaction hot pressed MoSi2/SiC composites at 500 °C, Mater. Sci. Tech. 13(5) (1997) 415-419.
[26] S. Paswan, R. Mitra, and S. K. Roy, Oxidation behaviour of the Mo-Si-B and Mo-Si-B-Al alloys in the temperature range of 700-1300 oC, Intermetallics 15 (2007) 1217-27.
[27] T. B. Massalski, H. Okamato, P. R. Subramanian and L. Kacprazak (eds.), Binary alloy phase diagrams, Vol. 2, ASM, Materials Park, OH, p.1333, p.1631, p.2054, (1987).
[28] K. Yanagihara, T. Maruyama, and K. Nagata, Effect of third elements on the pesting suppression of Mo-Si-X intermetallics (X=Al, Ta, Ti, Zr and Y), Intermetallics 4 (1996) S133-S139.
[29] Andrew Mueller, Ge Wang, Robert A. Rapp, Edward L. Courtright, and Thomas A. Kircher, Oxidation behavior of tungsten and germanium-alloyed molybdenum disilicide coatings, Mater. Sci. Eng. A. 155 (1992) 199-207.
[30] B.V. Cockeram, Growth and oxidation resistance of boron-modified and germanium-duped silicide diffusion coatings formed by the halide-activated pack cementation method, Surf. Coat. Technol. 76 (1995) 20-27.
[31] P.J. Meschter, Low-Temperature Oxidation of Molybdenum Disilicide, Metall. Trans. A. 23 (1992) 1763-72.
DOI: 10.1007/bf02804369
[32] C.D. Wirkus and D.R. Wilder, High-Temperature Oxidation of Molybdenum Disilicide, J. Am. Ceram. Soc. 49 (1966) 173-77.
[33] K. Yanagihara, T. Maruyama, and K. Nagata, High-Temperature Oxidation of Mo-Si-X Intermetallics (X=Al, Ti, Ta, Zr and Y), Intermetallics 3 (1995) 243-51.
[34] A. Stergiou, P. Tsakiropoulos, and A. Brown, The intermediate and high temperature oxidation behavior of Mo(Si1-xAlx)2 intermetallic alloys, Intermetallics, 5(1) (1997) 69-81.
[35] R. Mitra, Rohit Khanna, and V. V. Rama Rao, Microstructure, mechanical properties and oxidation behavior of a multiphase (Mo,Cr)(Si,Al)2 intermetallic alloy–SiC composite processed by reaction hot pressing, Mater. Sci. Eng. A. 382 (2004) 150-61.
[36] J. Cook, A. Khan, E. Lee, and R. Mahapatra, Oxidation of MoSi2-based composites, Mater. Sci. Eng. A. 155 (1992) 183-98.
[37] K. Natesan and S. C. Deevi, Oxidation behavior of molybdenum silicides and their composites, Intermetallics 8 (2000) 1147-58.
[38] M.G. Hebsur, Development and characterization of SiC(f)/MoSi2–Si3N4(p) hybrid composites, Mater. Sci. Eng. A. 261 (1999) 24-37.
[39] M.G. Hebsur and M. V. Nathal. 1997. Second Int. Symp. on Structural intermetallics. Seven Springs Mountain Resort, Champion, PA, USA, September 1997, in: M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle, R. Wagner and M. Yamaguchi (Eds.), Structural Intermetallics 1997, TMS, Warredale, PA, 1997, pp.949-958.
[40] W. Kowalik, Robert, and Mohan G. Hebsur, Cyclic oxidation study of MoSi2–Si3N4 base composites, Mater. Sci. Eng. A. 261 (1999) 300-03.
[41] M.K. Meyer and M. Akinc, Isothermal oxidation behavior of Mo-Si-B intermetallics at 1450 °C, J. Am. Ceram. Soc. 79 (1996) 2763-66.
[42] H. Nowotny, E. Dimakopoulou and H. Kudielka, Untersuchungen in den Dreistoffsystemen: Molybdän-in-Silizium-Bor, Wolfram-Silizium-Bor und in dem System: VSi2-TaSi2 Monatsh. Chem. 88 (1957) 180-192.
DOI: 10.1007/bf00901624
[43] A.J. Thom, E. Summers, and M. Akinc, Oxidation behavior of extruded Mo5Si3Bx-MoSi2-MoB intermetallics from 600 degrees-1600 °C, Intermetallics 10 (2002) 555-70.
[44] N. Nomura, T. Suzuki, K. Yoshimi, and S. Hanada, Microstructure and oxidation resistance of a plasma sprayed Mo-Si-B multiphase alloy coating, Intermetallics 11 (2003) 735-42.
[45] S. Ochiai, Improvement of the oxidation-proof property and the scale structure of Mo3Si intermetallic alloy through the addition of chromium and aluminum elements, Intermetallics 14 (2006) 1351-57.
[46] Jihan Zhou, Matthew Taylor, Georgian A. Melinte, Ashwin J. Shahani, Chamila C. Dharmawardhana, Hendrik Heinz, Peter W. Voorhees, John H. Perepezko, Karen Bustillo, Peter Ercius & Jianwei Miao, Quantitative characterization of high temperature oxidation using electron tomography and energy dispersive X-ray spectroscopy, Sci. Rep. 8 (2018) 10239:1-8.
[47] A. Gulec, X.X. Yu, M. Taylor, A. Yoon, J.M. Zuo, J.H. Perepezko, and L.D. Marks, Early Stage of Oxidation of Mo3Si by In Situ Environmental Transmission Electron Microscopy, Corrosion 74(3) (2018) 288-294.
DOI: 10.5006/2564
[48] K. Yoshimi, S. Nakatani, T. Suda, S. Hanada, H. Habazaki, Oxidation behavior of Mo5SiB2-based alloy at elevated temperatures, Intermetallics 10 (2002) 407-414.
[49] Sharma Paswan, R. Mitra, and S. K. Roy, Isothermal oxidation behaviour of Mo–Si–B and Mo–Si–B–Al alloys in the temperature range of 400–800 °C, Mater. Sci. Eng. A 424 (2006) 251-65.
[50] J. Das, B. Roy, N.K. Kumar, R. Mitra, High temperature oxidation response of Al/Ce doped Mo-Si-B composites, Intermetallics, 83 (2017) 101-109.
[51] V. Supatarawanich, D.R. Johnson, and C.T. Liu, Oxidation behavior of multiphase Mo-Si-B alloys, Intermetallics 12 (2004) 721-25.
[52] J.S. Park, R. Sakidja, and J. H. Perepezko, Coating designs for oxidation control of Mo-Si-B alloys, Scripta Mater. 46 (2002) 765-70.
[53] M.G. Mendiratta, T. A. Parthasarathy, and D. M. Dimiduk, Oxidation behavior of alpha Mo-Mo3Si-Mo5SiB2 (T2) three phase system, Intermetallics 10 (2002) 225-32.
[54] V. Supatarawanich, D.R. Johnson, and C.T. Liu, Effects of microstructure on the oxidation behavior of multiphase Mo–Si–B alloys, Mater. Sci. Eng. A 344 (2003) 328-39.
[55] Pranab Mandal, Andrew J. Thom, Matthew J. Kramer, Vikas Behrani, and Mufit Akinc, Oxidation behavior of Mo–Si–B alloys in wet air, Mater. Sci. Eng. A 371 (2004) 335-42.
[56] B. Roy, J. Das, and R. Mitra, Transient stage oxidation behavior of Mo76Si14B10 alloy at 1150 °C, Corros. Sci. 68 (2013) 231-37.
[57] Fang Wang, Aidang Shan, Xianping Dong, Jiansheng Wu, Oxidation behavior of Mo–12.5Si–25B alloy at high temperature, J. Alloys Compd. 459(1-2) (2008) 362-68.
[58] D. A. Helmick, G. H. Meier, F. S. Pettit, The Development of Protective Borosilicate Layers on a Mo-3Si-1B (Weight Percent) Alloy Metall. Mater. Trans. A. 36A (2005) 3371-83.
[59] Kyosuke Yoshimi, Shinya Nakatani, Shuji Hanada, Se-Hyun Ko, and Yong-Ho Park, Synthesis and high temperature oxidation of Mo–Si–B–O pseudo in situ composites, Sci. Technol. Adv. Mater. 3 (2002) 181-92.
[60] S. Burk, B. Gorr, V.B. Trindade, and H.-J. Christ, Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale, Oxid. Met. 73 (2010) 163-181.
[61] N.K. Kumar, B. Roy, R. Mitra, J. Das, Improvement of oxidation resistance of arc-melted Mo76Si14B10 by microstructure control upon minor Fe addition, Intermetallics 88 (2017) 28-30.
[62] R. Sakidja, F. Rioult, J. Werner, J.H. Perepezko, Aluminum pack cementation of Mo–Si–B alloys, Scripta Mater. 55(10) (2006) 903-906.
[63] R. Sakidja, J.S. Park, J. Hamann, J.H. Perepezko, Synthesis of oxidation resistant silicide coatings on Mo-Si-B alloys, Scripta Mater. 53(6) (2005) 723-728.
[64] Sanjib Majumdar, Isothermal and cyclic oxidation resistance of pack siliconized Mo–Si–B alloy, Appl. Surf. Sci. 414 (2017) 18–24.
[65] Annika Lange, Reinhold Braun, Magnetron-sputtered oxidation protection coatings for Mo–Si–B alloys, Corros. Sci. 84 (2014) 74-84.
[66] M. E. Schlesinger, H. Okamoto, A. B. Gokhale and R. Abbaschian, The Nb-Si (Niobium-Silicon) system, J. Phase Equil. 14(4) (1993) 502-509.
DOI: 10.1007/bf02671971
[67] S.J. Balsone, B. P. Bewlay, M. R. Jackson, P. R. Subramanian, J.-C. Zhao, A. Chatterjee and T. M. Heffernan, Materials beyond superalloys: exploiting high-temperature composites, Report No. 2001CRD098, GE Research and Development, July (2001).
[68] B.P. Bewlay, M.R. Jackson, J.C. Zhao, and P.R. Subramanian, A review of very-high-temperature Nb-silicide-based composites, Metall. Mater. Trans. A. 34 (2003) 2043-52.
[69] B.P. Bewlay, M. R. Jackson, J. C. Zhao and P. R. Subramanian, A review of very high-temperature Nb–silicide based composites, Report No. 2002GRC172, GE Research and Development, September (2002).
[70] B.P. Bewlay, M. R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta, and J.J. Lewandowski, Ultrahigh-temperature Nb-silicide-based composites, MRS Bull. 28 (2003) 646-53.
DOI: 10.1557/mrs2003.192
[71] Y. Liu, A.J. Thom, M.J. Kramer and M. Akinc, in: T. S. Srivatsan and V. A. Ravi (Eds.), Processing and fabrication of advanced materials for high temperature applications, TMS, Warrendale, PA, 2003, pp.258-271.
[72] M.R. Jackson, R.G. Rowe and D.W. Skelly, in: High-temperature ordered intermetallic alloys VI. Mater. Res. Soc. Symp. Proc., vol. 364, 1995, pp.1339-44.
[73] D.L. Douglass, The thermal expansion of niobium pentoxide and its effect on the spalling of niobium oxidation films, J. Less-Common Met. 5(2) (1963) 151-157.
[74] T. Murakami, C.N. Xu, A. Kitahara, M. Kawahara, Y. Takahashi, H. Inui, and M. Yamaguchi, Microstructure, mechanical properties and oxidation behavior of powder compacts of the Nb-Si-B system prepared by spark plasma sintering, Intermetallics 7 (1999) 1043-48.
[75] B.P. Bewlay, M. R. Jackson and M. F. X. Gigliotti, Niobium Silicide High Temperature In-Situ Composites, in: R. L. Fleischer and J. H. Westbrook (Eds.), Intermetallic compounds – principles and practice – Vol. 3, John Wiley, Chichester, 2001, pp.541-560.
[76] E.S.K. Menon, and M.G. Mendiratta, High Temperature oxidation in multicomponent Nb alloys, E. Mater. Sci. Forum 475–476 (2005) 717-20.
[77] E.S.K. Menon, M.G. Mendiratta and D.M. Dimiduk, in: K. J. Hemker, D. M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J. M. Larsen, V. K. Sikka, M. Thomas and J. D. Whittenberger (Eds.), Structural intermetallics 2001, TMS, Warrendale, PA, 2001, pp.591-600.
[78] K.S. Chan, Cyclic oxidation response of multiphase niobium-based alloys, Metall. Mater. Trans. A. 35 (2004) 589-97.
[79] K. Chattopadhyay, R. Mitra, and K. K. Ray, Nonisothermal and isothermal oxidation behavior of Nb-Si-Mo alloys, Metall. Mater. Trans. A. 39 (2008) 577-92.
[80] N. Esparza, V. Rangel, A. Gutierrez, B. Arellano and S. K. Varma, A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb–Cr–Si system, Mater. High Temp. 33(2) (2016) 105-114.
[81] Brendan Voglewede, Victoria R. Rangel, S.K. Varma, The effects of uncommon silicides on the oxidation behavior of alloys from the Nb–Cr–Si system, Corr. Sci. 61 (2012) 123-133.
[82] S.J. Balsone, B. P. Bewlay, M. R. Jackson, P. R. Subramanian, J.-C. Zhao, A. Chatterjee and T. M. Heffernan, in: K. J. Hemker, D. M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J. M. Larsen, V. K. Sikka, M. Thomas and J. D. Whittenberger (Eds.), Proc. of the 2001 Intermetallics Symposium on Structural intermetallics, 99. TMS, Warrendale, PA, 2001, pp.99-108.
[83] B.P. Bewlay, C.L. Briant, M.R. Jackson, and P.R. Subramanian, Recent advances in Nb-silicide in-situ composites, G. Kneringer, P. Rodhammer and H. Wildner, Plansee Holding AG, Reutte (Eds.), 15th International Plansee Seminar, 2001, Vol. 1, pp.404-419.
[84] A. Vazquez, S.K. Varma, High-temperature oxidation behavior of Nb–Si–Cr alloys with Hf additions, J. Alloys Compd. 509 (2011) 7027–7033.
[85] H.R. Jiang, L.Y. Niu, W.J. Xi, W.S. Ma, L. Zhang, Influence of Ti addition on high temperature oxidation resistance of Nb-based alloys, Trans. Nonferr. Met. Soc. China 24 (8) 2044–(2049).
[86] K. Zelenitsas, P. Tsakiropoulos, Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800 ◦C, Mater. Sci. Eng. A 416 (2006) 269–280.
[87] B.P. Bewlay, R. DiDomizio, P.R. Subramanian, V. Supatarawanich, J. D. Rigney, R. Darolia, US Patent No. 2008/0142122A1, June 19, (2008).
[88] Wan Wang, Chungen Zhou, Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb-Si based alloy, Corros. Sci. 110 (2016) 114-122.
[89] P. Zhang, X.P. Guo, Effect of Al content on the structure and oxidation resistance of Y and Al modified silicide coatings prepared on Nb-Ti-Si based alloy, Corros. Sci. 71 (2013) 10–19.
[90] P. Zhang, X.P. Guo, Y and Al modified silicide coatings on an Nb-Ti-Si based ultrahigh temperature alloy prepared by pack cementation process, Surf. Coat. Technol. 206 (2011) 446–454.
[91] P. Zhang, X.P. Guo, A comparative study of two kinds of Y and Al modified silicide coatings on an Nb-Ti-Si based alloy prepared by pack cementation technique, Corros. Sci. 53 (2011) 4291–4299.
[92] P. Zhang, X.P. Guo, Improvement in oxidation resistance of silicide coating on an Nb-Ti-Si based ultrahigh temperature alloy by second aluminizing treatment, Corros. Sci. 91 (2015) 101–107.
[93] W. Wang, B.Y. Zhang, C.G. Zhou, Formation and oxidation resistance of Hf and Al modified silicide coating on Nb-Si based alloy, Corros. Sci. 86 (2014) 304–309.
[94] Y.T. Liu, X.P. Guo, Microstructure and growth kinetics of Ce and Y jointly modified silicide coatings for Nb-Ti-Si based ultrahigh temperature alloy, Prog. Nat. Sci.: Mater. Int. 23 (2013) 190–197.
[95] P.J Meschter, D.S. Schwartz, Silicide-matrix materials for high-temperature applications, JOM 41 (1989) 52-55.
DOI: 10.1007/bf03220384
[96] R. Rosenkranz, G. Frommeyer, and W. Smarsly, Microstructures and properties of high melting point intermetallic Ti5Si3 and TiSi2 compounds, Mater. Sci. Eng. A 152 (1992) 288-94.
[97] A.J. Thom, Y. Kim and M. Akinc, Effect of Processing on Oxidation of Ti5Si3, in: High-Temperature Ordered Intermetallic Alloys V, Mater. Res. Soc. Symp. Proc. Vol. 288, 1993, pp.1037-42.
[98] R. Mitra, and V.V. Rama Rao, Elevated-temperature oxidation behavior of titanium silicide and titanium silicide based alloy and composite. Metall. Mater. Trans. A. 29 (1998) 1665-75.
[99] A. Rahmel and P.J. Spencer, Thermodynamic aspects of TiAl and TiSi2 oxidation: the Al-Ti-O and Si-Ti-O phase diagrams, Oxid. Met. 35 (1–2) (1991) 53-68.
DOI: 10.1007/bf00666500
[100] A.J. Thom, Y. Kim, M. Akinc, Effect of processing on oxidation of titanium silicide (Ti5Si3), High-Temperature Ordered Intermetallic Alloys V, Materials Research Society Symposium Proceedings 288 (1993) 1037-1042.
[101] S. Taniguchi, T. Minamida, T. Shibata, Oxidation behavior of Ti5Si3 at temperatures between 1400 and 1700 K, Mater. Sci. Forum 251-254 (1997) 227-234.
[102] J.J. Williams, M. Akinc, Oxidation Resistance of Ti5Si3 and Ti5Si3Zx at 1000 oC (Z = C, N, or O), Oxid. Met. 58 (2002) 57-71.