Periodic Layer Formation during Multiphase Diffusion in Silicide Systems

Article Preview

Abstract:

Periodic layered morphology may occur during displacement solid-state reactions in ternary (and higher-order) silicide and other material systems. This periodic layered structure consists of regularly spaced layers (bands) of particles of one reaction product embedded in a matrix phase of another reaction product. The number of systems that is known to produce the periodic layered structure is rather small but increasing and includes metal/metal and metal/ceramic semi-infinite diffusion couples. The experimental results on different systems, where the periodic pattern formation has been observed are systematized and earlier explanations for this peculiar diffusion phenomenon are discussed. Formation of the reaction zone morphologies periodic in time and space can be considered as a manifestation of the Kirkendall effect accompanying interdiffusion in the solid state. The patterning during multiphase diffusion is attributed to diverging vacancy fluxes within the interaction zone. This can generate multiple Kirkendall planes, which by attracting in situ-formed inclusions of “secondary-formed phase” can result in a highly patterned microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 21)

Pages:

157-189

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Clark, F.N. Rhines, Diffusion layer formation in the ternary system aluminum-magnesium-zinc, Trans. ASM 51 (1959)199-221.

Google Scholar

[2] J.S. Kirkaldy, L.C. Brown, Diffusion behaviour in ternary, multiphase systems, Can. Metall. Quat. 2 (1963) 89-117.

Google Scholar

[3] J.B. Clark, Conventions for plotting the diffusion paths in multiphase ternary diffusion couple on the isothermal section of a ternary phase diagram, Trans. Met. Soc. AIME 227 (1963) 1250-1251.

Google Scholar

[4] C. Wagner, Über den Mechanismus von doppelten Umsetzungen durch Reaktion im festen Zustand, Z. Anorg. Allgem. Chem. 236 (1938) 320-338 (in German).

DOI: 10.1002/zaac.19382360130

Google Scholar

[5] C. Wagner, Oxidation of alloys involving noble metals, J. Electrochem. Soc. 103 (1956) 571-580.

DOI: 10.1149/1.2430159

Google Scholar

[6] R.A. Rapp, A. Ezis, G.J. Yurek, Displacement reactions in the solid state, Metall. Trans. 4 (1973) 1283-1292.

DOI: 10.1007/bf02644523

Google Scholar

[7] F.J.J. van Loo, J.A. van Beek, G.F. Bastin, R. Metselaar, The role of thermodynamics and kinetics in multiphase ternary diffusion, in: M.A. Dayananda, G.E. Murch (Eds.), Diffusion in Solids: Recent Developments, The Metallurgical Society, Inc., 1985, pp.231-259.

Google Scholar

[8] F.J.J. van Loo, Multiphase diffusion in binary and ternary solid-state systems, Prog. Solid State Chem. 20 (1990) 47-99.

DOI: 10.1016/0079-6786(90)90007-3

Google Scholar

[9] F.N. Rhines, A metallographic study of internal oxidation in the alfa solid solution of copper, Trans. AIME 137 (1940) 246-290.

Google Scholar

[10] J.L. Meijering, M.J. Druyvesteyn, Hardening of metals by internal oxidation, Part II, Philips Res. Rep. 2 (1947) 260-280.

Google Scholar

[11] R.A. Bosch, F.V. Lenel, G.S. Ansell, The influence and rate of oxidation upon the properties of internally oxidized silver-magnesium alloys, Trans. ASM 57 (1964) 960-971.

Google Scholar

[12] Y.S. Shen, E.J. Zdanuk, R.H. Krock, The influence of additives on the formation of periodic precipitation (Liesegang bands) in the Ag-Cd system, Met. Trans 2 (1971) 2839-2844.

DOI: 10.1007/bf02813261

Google Scholar

[13] V.A. van Rooijen, E.W. van Royen, J. Vrijen, S. Radelaar, On Liesegang bands in internally oxidized AgCd-based ternary alloys, Acta Met. 23 (1975) 987-995.

DOI: 10.1016/0001-6160(75)90013-9

Google Scholar

[14] D.L. Ricoult, H. Schmalzried, Periodic precipitation during internal oxidation of Iron-doped magnesium oxide crystals, Ber. Bunsenges. Phys. Chem. 9 (1986) 135-141.

DOI: 10.1002/bbpc.19860900209

Google Scholar

[15] R. E. Liesegang, Ueber einige Eigenschaften von Gallerten, Naturwiss. Wochenschr. 11 (1896) 353-362 (in German).

Google Scholar

[16] J.E. Gerrard, M. Hoch, F.R. Meeks, Counterdiffusion of aluminium and arsenic in copper, Acta Met. 10 (1962) 751-758.

DOI: 10.1016/0001-6160(62)90088-3

Google Scholar

[17] R.L. Klueh, W.W. Mullins, Periodic precipitation (Liesegang phenomena) in solid silver-I. Experimental, Acta Met. 17 (1969) 59-67.

DOI: 10.1016/0001-6160(69)90163-1

Google Scholar

[18] K. Osinski, A.W. Vriend, G.F. Bastin, F.J.J. van Loo, Periodic formation of FeSi bands in diffusion couples Fe(15wt%Si)-Zn, Z. Metallkd. 73 (1982) 258-261.

DOI: 10.1515/ijmr-1982-730412

Google Scholar

[19] W. B. Pearson, The Physical Chemistry and Physics of Metals and Alloys, Wiley & Sons, Inc, (1972).

Google Scholar

[20] M.R. Rijnders, A.A. Kodentsov, Cs. Cserháti, J. van den Akker, F.J.J. van Loo, Periodic layer formation during solid state reactions, Defect Diffusion Forum 129-130 (1996) 253-266.

DOI: 10.4028/www.scientific.net/ddf.129-130.253

Google Scholar

[21] K. Osinski, The Influence of Aluminium and Silicon on the Reaction between Iron and Zinc, PhD thesis, Eindhoven, The Netherlands, (1983).

Google Scholar

[22] M.R. Rijnders, F.J.J. van Loo, Aspects of periodic layer formation in Co2Si/Zn diffusion couples, Scripta Metall. Mater. 32 (1995)1931-1935.

DOI: 10.1016/0956-716x(95)00082-7

Google Scholar

[23] M.R. Rijnders. Periodic Layer Formation during Solid State Reactions, PhD thesis, Eindhoven, The Netherlands, (1996).

Google Scholar

[24] M.R. Rijnders, A.A. Kodentsov, J.A. van Beek, F.J.J. van Loo, Periodic layered morphologies resulting from solid state reactions, in: Proc. TMS Annual Meeting, Design Fundamentals of High-Temperature Composites, Intermetallics and Metal-Ceramics Systems, R.Y. Lin, Y. A. Chang R.G. Reddy, C.T. Liu (Eds.), The Minerals, Metals and Materials Society,1996, pp.153-167.

Google Scholar

[25] A.A. Kodentsov, M.R. Rijnders, F.J.J. van Loo, Periodic pattern formation in solid state reactions related to the Kirkendall effect. Acta Mater. 46 (1998) 6521-6528.

DOI: 10.1016/s1359-6454(98)00309-7

Google Scholar

[26] A.A. Kodentsov, M.J.H. van Dal, C. Cserháti, A.M. Gusak, F.J.J. van Loo, Patterning in reactive diffusion, Defect Diffusion Forum 194-199 (2001)1491-1502.

DOI: 10.4028/www.scientific.net/ddf.194-199.1491

Google Scholar

[27] J. Bardeen, C. Herring, Diffusion in Alloys, in: Imperfections in Nearly Perfect Crystals, W. Shockley, J.H. Hollomon, R. Maurer, F. Seitz (Eds.), Wiley, Ney York, 1952, pp.261-288.

DOI: 10.1107/s0365110x52002677

Google Scholar

[28] M. He, X. Su, F. Yin, J. Wang, Zh. Li, Periodic layered structure in Ni3Si/Zn diffusion couples, Scripta Mater. 59 (2008) 411-413.

DOI: 10.1016/j.scriptamat.2008.04.015

Google Scholar

[29] X. Su, C. Liu, S. Yang, F. Yin, J. Wang, A general qualitative description for the initial stages of periodic pattern formation in Ni3Si/Zn diffusion couples, Scripta Mater. 62 (2010) 485-487.

DOI: 10.1016/j.scriptamat.2009.12.021

Google Scholar

[30] Y.C. Chen, X.F. Zhang, Y.K. Ren, L. Han, D.Y. Lin, Q.P. Wang, Microstructure evolution of periodic layers formed during soli state reaction between Zn and Ni3Si, Intermetallics 36 (2013) 8-11.

DOI: 10.1016/j.intermet.2012.12.015

Google Scholar

[31] P. Nash, Y.Y. Pan, Ni-Zn (Nickel-Zinc), in: P. Nash (Ed.), Phase Diagrams of Binary Nickel Alloys, ASM International, 1991, pp.382-390.

Google Scholar

[32] H.H. Stadelmaier, J.M. Brett, G. Hofer, Das Dreistoffsystem Nickel-Zink-Silizium, Z. Metallkd. 59 (1968) 881-882 (in German).

DOI: 10.1515/ijmr-1968-591108

Google Scholar

[33] H. Xu, B. Hu, W. Sun, P. Wang, Y. Du, X. Xiong, J.L. Liang, Zh. Jin, Phase equilibria in the Ni-Si-Zn system at 600 ºC, Intermetallics 19 (2011) 1089-1095.

DOI: 10.1016/j.intermet.2010.11.005

Google Scholar

[34] Y.C. Chen, X.F. Zhang, L. Han, Z.W. Du, Periodic layer formation during solid state reaction between Zn and CuTi, Mater. Lett. 76 (2012) 151-154.

DOI: 10.1016/j.matlet.2012.02.063

Google Scholar

[35] Th. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, (1986).

Google Scholar

[36] S.A. Zver'kov, S.F. Dunaev, E. M. Slusarenko, Interaction of magnesium with alloys of the Co-Ni system, Vestn. Mosk. Univ., Ser 2, Khim. 29 (1988) 182-184.

Google Scholar

[37] S.F. Dunaev, S.A. Zver'kov, Influence of high pressure on the formation of periodic regular structures in multicomponent diffusion zones, J. Less-Comm. Met. 153 (1989) 143-150.

DOI: 10.1016/0022-5088(89)90540-7

Google Scholar

[38] F. Mazaudier, C. Proye, F. Hodaj, Further insight into mechanisms of solid state interactions in UMo/Al system, J. Nucl. Mater. 377 (2008) 476-485.

DOI: 10.1016/j.jnucmat.2008.04.016

Google Scholar

[39] I. Barin, O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, (1973).

Google Scholar

[40] Y.C. Chen, J. Xu, X.H. Fan, X.F. Zhang, L. Han, D.Y. Lin, Q.H. Li, C. Uher, The mechanism of periodic layer formation during solid-state reaction between Mg and SiO2, Intermetallics 17 (2009) 920-926.

DOI: 10.1016/j.intermet.2009.04.002

Google Scholar

[41] I. Gutman, L. Klinger, I. Gotman, M. Shapiro, Experimental observation of periodic structure formation in SiO2-Mg system, Scripta Mater. 45 (2001) 363-367.

DOI: 10.1016/s1359-6462(01)01043-0

Google Scholar

[42] I. Gutman, I. Gotman, M. Shapiro, Kinetics and mechanism of periodic structure formation at SiO2/Mg interface, Acta Mater. 54 (2006) 4677-4684.

DOI: 10.1016/j.actamat.2006.05.048

Google Scholar

[43] L. Klinger, I. Gutman, I. Gotman, A switch-over model of periodic structure formation in ternary diffusion couples, Scripta Mater. 45 (2001) 1221-1226.

DOI: 10.1016/s1359-6462(01)01153-8

Google Scholar

[44] I. Gutman, L. Klinger, I. Gotman, M. Shapiro, Model for evolution of periodic layered structure in the SiO2/Mg system, Solid State Ionics 180 (2009) 1350-1355.

DOI: 10.1016/j.ssi.2009.08.015

Google Scholar

[45] L. Shi, P. Shen, E. Dong, Q. Jiang, Reactive wetting in liquid magnesium/silica and magnesium/silicon systems, Appl. Surf. Sci. 274 (2013) 124-130.

DOI: 10.1016/j.apsusc.2013.02.126

Google Scholar

[46] D.W. Song, R. Subramanian, R. Dieckmann, Displacement reactions in the Ni-Al-O system resulting in periodic layer structures, Mat. Res. Soc. Symp. Proc. 365 (1995) 59-64.

DOI: 10.1557/proc-365-59

Google Scholar

[47] M.M.P. Janssen, G.D. Rieck, Reaction diffusion and Kirkendall effect in the nickel-aluminium system, Trans. Met. Soc. AIME 239 (1967) 1372-1385.

Google Scholar

[48] R.L. Mehan, R.B. Bolon, Interaction between silicon carbide and a nickel-based superalloy at elevated temperatures, J. Mater. Sci. 14 (1979) 2471-2481.

DOI: 10.1007/bf00737038

Google Scholar

[49] M.R. Jackson, R.L. Mehan, A.M. Devis, E.L. Hall, Solid state SiC/Ni alloy reaction, Met. Trans. A 14A (1983) 355-364.

DOI: 10.1007/bf02644213

Google Scholar

[50] R.C.J. Schiepers, F.J.J. van Loo, G. de With, Reactions between α-silicon carbide ceramic and nickel or iron, J. Amer. Ceram. Soc. 71 (1988) C284-C287.

Google Scholar

[51] M. Backhaus-Ricoult, Solid state reactions between silicon carbide and various transition metals, Ber. Bunsenges. Phys. Chem. 93 (1989) 1277-1281.

DOI: 10.1002/bbpc.19890931127

Google Scholar

[52] T.C. Chou, Anomalous solid state reaction between SiC and Pt, J. Mater. Res. 5 (1990) 601-608.

DOI: 10.1557/jmr.1990.0601

Google Scholar

[53] T.C. Chou, High temperature reactions between SiC and platinum, J. Mater. Sci. 26 (1991) 1412-1420.

DOI: 10.1007/bf00544487

Google Scholar

[54] T.C. Chou, A. Joshi, J. Wadsworth, Solid state reactions of SiC with Co, Ni and Pt, J. Mater. Res. 6 (1991) 796-809.

DOI: 10.1557/jmr.1991.0796

Google Scholar

[55] R.C.J. Schiepers, J.A. van Beek, F.J.J. van Loo, G. de With, The interaction between SiC and Ni, Fe (Fe,Ni) and steel: Morphology and kinetics, J. Eur. Ceram. Soc. 9 (1993) 211-218.

DOI: 10.1016/0955-2219(93)90090-e

Google Scholar

[56] C. Rado, S. Kalogeropoulou, N. Eustathopoulos, Surface and bulk interactions in M-SiC systems (M=Au, Cu, Ni), Mat. Res. Soc. Symp. Proc. 327 (1994) 319-324.

DOI: 10.1557/proc-327-319

Google Scholar

[57] J.H. Gülpen, A.A. Kodentsov, F.J.J. van Loo, Growth of silicides in Ni-Si and Ni-SiC bulk diffusion couples, Z. Metallkd. 86 (1995) 530-539.

DOI: 10.1515/ijmr-1995-860803

Google Scholar

[58] K. Bhanumurhy, R. Schmid-Fetzer, Experimental study of ternary Pd-Si-C phase equilibria and Pd/SiC interface reactions, Z. Metallkd. 87 (1996) 244-253.

DOI: 10.1515/ijmr-1996-870402

Google Scholar

[59] A.A. Kodentsov, M.R. Rijnders, F.J.J. van Loo, Chemical aspects of metal-ceramic interactions, Mater. Sci. Forum 207-209 (1996) 69-78.

DOI: 10.4028/www.scientific.net/msf.207-209.69

Google Scholar

[60] R. Metselaar, A. Kodentsov and F.J.J. van Loo, Microstructural evolution of SiC/metal interfaces at elevated temperatures, Key Eng. Mater. 132-136 (1997) 1758-1761.

DOI: 10.4028/www.scientific.net/kem.132-136.1758

Google Scholar

[61] A.A. Kodentsov and F.J.J. van Loo, Metallization of SiC ceramics: Chemical aspects, in: High Temperature Materials Chemistry, K. E. Spear (Ed.), The Electrochemical Society, Inc., Pennington, New Jersey, Vol. 97-39, 1997, pp.468-471.

Google Scholar

[62] M.R. Rijnders, A.A. Kodentsov, J.A. van Beek, J. van den Akker, F.J.J. van Loo, Pattern formation in Pt-SiC diffusion couples, Solid State Ionics 95 (1997) 51-59.

DOI: 10.1016/s0167-2738(96)00578-4

Google Scholar

[63] A.A. Kodentsov, F.J.J. van Loo, Periodic pattern formation in metal-ceramic reactions, Adv. Sci. Tech. 46 (2006)136 -145.

Google Scholar

[64] S.L. Markovski, M.J.H. van Dal, M.J.L. Verbeek, A.A. Kodentsov, F.J.J. van Loo, Microstructology of solid-state reactions, J. Phase Equilibria 20 (1999) 373–388.

DOI: 10.1361/105497199770340905

Google Scholar

[65] C. Wagner, Mathematical analysis of the formation of periodic precipitation, J. Colloid. Sci. 5 (1950) 85-97.

Google Scholar

[66] W. Ostwald, Lehrbuch der allgemeinen Chemie, An. Engelman Verlag, Leipzig, 1897 (in German).

Google Scholar

[67] J.S. Kirkaldy, Spontaneous evolution of spatiotemporal patterns in materials, Rep. Prog. Phys. 55 (1992) 723-795.

DOI: 10.1088/0034-4885/55/6/002

Google Scholar

[68] J.S. Kirkaldy, Spontaneous evolution of microstructure in materials, Met. Trans. A 24A (1993) 1689-1721.

Google Scholar

[69] C.R. Kao, Y.A. Chang, A theoretical analysis for the formation of periodic layered structure in ternary diffusion couples involving a displacement type of reactions, Acta Metall. Mater. 41 (1993) 3463-3472.

DOI: 10.1016/0956-7151(93)90226-i

Google Scholar

[70] F.-Y. Shiau, Y.A. Chen, Reactions between cobalt and gallium arsenide in bulk and thin-film, Mater. Chem. Phys. 32 (1992) 300-309.

Google Scholar

[71] Y.C. Chen, Y.G. Zhang, C.Q. Chen, Quantitative description of periodic layer formation during solid-state reactions, Mater. Sci. Eng. A A362 (2003) 135-144.

Google Scholar

[72] A.A. Kodentsov, A. Paul, F.J.J. van Loo, Bifurcation of the Kirkendall plane and patterning in reactive diffusion, Z. Metallkd. 95 (2004) 258-260.

DOI: 10.3139/146.017946

Google Scholar

[73] M.J.H. van Dal, A.M. Gusak, C. Cserháti, A.A. Kodentsov, F.J.J. van Loo, Microstructural stability of the Kirkendall plane in solid-state diffusion, Phys. Rev. Lett., 86 (2001) 3352-3355.

DOI: 10.1103/physrevlett.86.3352

Google Scholar

[74] A. Paul, A.A. Kodentsov, M.J.H. van Dal, F.J.J. van Loo, The Kirkendall effect in multiphase diffusion, Acta Mater. 52 (2004) 623-630.

DOI: 10.1016/j.actamat.2003.10.007

Google Scholar

[75] A. Kodentsov, A. Paul, M.J.H. van Dal, Cs. Cserháti, A.M. Gusak, F.J.J. van Loo, On the spatial stability and bifurcation of the Kirkendall plane during solid-state interdiffusion, Crit. Rev. Solid State Mater. Sci. 33 (2008) 210-233.

DOI: 10.1080/10408430802462958

Google Scholar

[76] J. Philbert, Atom Mouvements. Diffusion and Mass Transport in Solids, Les Éditions de Physique, Les Ulis, (1991).

Google Scholar

[77] M.J.H. van Dal, M.C.L.P Pleumeekers, A.A. Kodentsov, F.J.J. van Loo, Intrinsic diffusion and Kirkendall effect in Ni-Pd and Fe-Pd solid solutions, Acta Mater. 48 (2000) 385-396.

DOI: 10.1016/s1359-6454(99)00375-4

Google Scholar

[78] L. Boltzmann, Zur Integration der Diffusionsgleichung bei Variabeln Diffusions-Coefficienten, Ann. Physik. 53 (1894) 959-964 (in German).

DOI: 10.1002/andp.18942891315

Google Scholar

[79] C. Matano, On the relation between the diffusion-coefficients and concentrations of solid metals (The Nickel-Copper System), Jap. J. Phys. 8 (1933) 109-113.

Google Scholar

[80] F. Sauer, V. Freise, Diffusion in Binären Gemischen mit Volumenänderung, Z. Electrochem. 66 (1962) 353-363 (in German).

Google Scholar

[81] M.J.H. van Dal, D.G.G.M. Huibers, A.A. Kodentsov, F.J.J. van Loo, Formation of Co–Si intermetallics in bulk diffusion couples, Part I. Growth kinetics and mobilities of species in the silicide phases, Intermetallics 9 (2001) 409- 421.

DOI: 10.1016/s0966-9795(01)00018-8

Google Scholar

[82] P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, (1985).

Google Scholar

[83] M.J.H. van Dal, A.A. Kodentsov, F.J.J. van Loo, Formation of Co-Si intermetallics in bulk diffusion couples. Part II: Manifestations of the Kirkendall effect accompanying reactive diffusion, Intermetallics 9 (2001) 451-456.

DOI: 10.1016/s0966-9795(01)00019-x

Google Scholar

[84] C. Wagner, The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems, Acta Met. 17 (1969) 99-107.

DOI: 10.1016/0001-6160(69)90131-x

Google Scholar

[85] F.J.J. van Loo, B. Pieraggi, R.A. Rapp, Interface migration and the Kirkendall effect in diffusion-driven phase transformations, Acta Metall. Mater. 38 (1990) 1769-1779.

DOI: 10.1016/0956-7151(90)90019-d

Google Scholar

[86] B. Pieraggi, R.A. Rapp, F.J.J. van Loo, J.P. Hirth, Interfacial dynamics in diffusion-driven phase transformations, Acta Metall. Mater. 38 (1990) 1781-1788.

DOI: 10.1016/0956-7151(90)90020-h

Google Scholar

[87] F.J.J. van Loo, B. Pieraggi, Reaction and diffusion in multiphase systems: Phenomenology and frames, Mater. Sci. Forum 155-156 (1994) 307-316.

DOI: 10.4028/www.scientific.net/msf.155-156.307

Google Scholar

[88] G.F. Bastin, G.D. Rieck, Diffusion in the titanium-nickel system: I. Occurrence and growth of the various intermetallic compounds, Met. Trans. 5 (1974) 1817-1826.

DOI: 10.1007/bf02644146

Google Scholar

[89] A. Paul, A.A. Kodentsov, F.J.J. van Loo, Bifurcation of the Kirkendall plane during interdiffusion in the intermetallic compound β-NiAl, Acta Mater. 52 (2004) 4041-4048.

DOI: 10.1016/j.actamat.2004.05.028

Google Scholar

[90] M.J.H. van Dal, A.M. Gusak, Cs. Cserháti, A.A. Kodentsov, F.J.J. van Loo, Spatio-temporal instabilities of the Kirkendall-marker planes during interdiffusion in βʹ-AuZn, Phil. Mag. A 82 (2002) 943-954.

DOI: 10.1080/01418610208240011

Google Scholar