Diffusion Rates of Components in Metal-Silicides Depending on Atomic Number of Refractory Metal Component

Article Preview

Abstract:

Interdiffusion studies conducted in group IVB, VB and VIB metal-silicon systems are discussed in detail to show a pattern in the change of diffusion coefficients with the change in atomic number of the refractory metal (M) component. MSi2 and M5Si3 phases are considered for these discussions. It is shown that integrated diffusion coefficients increase with the increase in atomic number of the refractory component when the data are plotted with respect to the melting point normalized annealing temperature. This indicates the increase in overall defect concentration facilitating the diffusion of components. This is found to be true in both the phases. Additionally, the estimated ratios of tracer diffusion coefficients indicate the change in concentration of antisite defects in certain manner with the change in atomic number of the refractory components.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 21)

Pages:

29-84

Citation:

Online since:

March 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall effect in Solids, Springer, Heidelberg, (2014).

DOI: 10.1007/978-3-319-07461-0

Google Scholar

[2] A. Paul, S.V. Divinski (Editors), Handbook of Solid State Diffusion, Volume 1: Diffusion Fundamentals and Techniques, Elsevier, Amsterdam, (2017).

Google Scholar

[3] A. Paul, S.V. Divinski (Editors), Handbook of Solid State Diffusion, Volume 2: Diffusion Analysis in Material Applications, Elsevier, Amsterdam, (2017).

Google Scholar

[4] S. Roy, S.V Divinski, A. Paul, Philosophical Magazine 94 (2014) 683-699.

Google Scholar

[5] S. Roy, A. Paul, Materials Chemistry and Physics 143 (2014)1309-1314.

Google Scholar

[6] S. Roy, S. Prasad, S.V. Divinski, A. Paul, Philosophical Magazine 94 (2014) 1508-1528.

Google Scholar

[7] S. Roy, A. Paul, Intermetallics 37 (2013) 83-87.

Google Scholar

[8] S. Roy, A. Paul, Philosophical Magazine 92 (2012) 4215-4229.

Google Scholar

[9] S. Prasad, A. Paul, Journal of Phase Equilibria and Diffusion 32 (2011) 212-218.

Google Scholar

[10] S. Prasad, A. Paul, Intermetallics 19 (2011) 1191-1200.

Google Scholar

[11] S. Prasad and A. Paul, Defects and Diffusion Forum 323-325 (2012) 459-464.

Google Scholar

[12] S. Prasad, A. Paul, Acta Materialia 59 (2011) 1577-1585.

Google Scholar

[13] A.K. Kumar, T. Laurila, V. Vuorinen, A. Paul, Scripta Materialia 60 (2009) 377-380.

Google Scholar

[14] T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker and L. E. Kacprzaki, Binary alloy phase diagrams, ASM-I, Materials Park, Ohio (1986).

Google Scholar

[15] A. Paul, Chapter 3: Estimation of Diffusion Coefficients in Binary and Pseudo-Binary Bulk Diffusion Couples, Handbook of Solid State Diffusion, Volume 1: Diffusion Fundamentals and Techniques, Elsevier, Amsterdam, (2017).

DOI: 10.1016/b978-0-12-804287-8.00003-8

Google Scholar

[16] F. J. J. Van Loo, Prog. Solid State Chem. 20 (1990) 47-99.

Google Scholar

[17] T. Tokunaga, K. Hashima, H. Ohtani and M. Hasebe, Materials Transactions 45 (2004) 1507-1514.

Google Scholar

[18] C. R. F. Azevedo and H. M. Flower, Materials Science and Technology 16 (2000) 372-381.

Google Scholar

[19] H.M. Chen, F. Zheng, H.S. Liu, L.B. Liu, Z.P. Jin, Journal Alloys Compounds 468 (2009) 209-216.

Google Scholar

[20] A. de Siervo, C.R. Fluchter, D. Weier, M. Schurmann, S. Dreiner, C Westphal, MF Carazzolle, Pancotti A, Landers R, Kleiman GG. Physical Review B 74 (2006) 075319.

DOI: 10.1103/physrevb.74.075319

Google Scholar

[21] H.T. Johnson-Steigelman, A.V. Brinck, S.S. Parihar, P.F. Lyman, Physical Review B 69 (2004) 235322.

Google Scholar

[22] A. Beimborn, Henschel E, Westphal C. Applied Surface Science 265 (2013) 1-3.

Google Scholar

[23] J.F. Ziegler, J.W. Mayer, C.J. Kircher, K.N. Tu, Journal of Applied Physics 44 (1973) 3851-3857.

Google Scholar

[24] J.C. Zhao, B.P. Bewlay, M.R. Jackson, Q.J. Chen, Phase Equilibria 21 (2000) 40-45.

Google Scholar

[25] U. Gosele, K.N. Tu, Journal of Applied Physics 53 (1982) 3252-3260.

Google Scholar

[26] T. Laurila, J. Molarius, Critical Review in Solid State Materials Science 28 (2003) 185-230.

Google Scholar

[27] F.C.T. So, C.D. Lien, M.A. Nicolet, Journal of Vacuum Science and Technology A- 3 (1985) 2284-2288.

Google Scholar

[28] P. Kiruthika, S.K. Makineni, C. Srivastava, K. Chattopadhyay, A. Paul, Acta Materialia 105 (2016) 438-448.

DOI: 10.1016/j.actamat.2015.12.014

Google Scholar

[29] S. Divinski, Chapter 10: Defects and Diffusion in Ordered Compounds, Handbook of Solid State Diffusion, Volume 1: Diffusion Fundamentals and Techniques, Elsevier, Amsterdam, (2017).

DOI: 10.1016/b978-0-12-804287-8.00010-5

Google Scholar

[30] X.Y. Zhang, W. Sprengel, K. Blaurock, A.A. Rempel, K.J. Reichle, K. Reimann, H. Inui, H.E. Schaefer, Physical Review B 66 (2002) 144105.

Google Scholar

[31] M. Salamon, A. Strohm, T. Voss, P. Laitinen, I. Riihimaki, S. Divinski, W. Frank, J. Raisanen and H. Mehrer, Philosophical Magazine 84 (2004) 737-756.

DOI: 10.1080/14786430310001641966

Google Scholar

[32] S. Divinski, M. Salamon and H. Mehrer, Philosophical Magazine 84 (2004) 757-772.

DOI: 10.1080/14786430310001646781

Google Scholar

[33] M. Iannuzzi, P. Raiteri, M. Celino and L. Miglio, Journal of Physics: Condesed Matter 14 (2002) 9535-9553.

DOI: 10.1088/0953-8984/14/41/310

Google Scholar

[34] C. Milanese, V. Buscaglia, F. Maglia, U. Anselmi-Tamburini, Acta Materialia 50 (2002) 1393-1403.

DOI: 10.1016/s1359-6454(01)00445-1

Google Scholar

[35] V. Buscaglia, U. Anselmi-Tamburini, Acta Mater 50 (2002) 525-535.

Google Scholar

[36] C. Wagner, Acta Metallurgica 17 (1969) 99-107.

Google Scholar

[37] C. Ghosh and A. Paul,  Acta Materialia 55 (2007) 1927-1939.

Google Scholar

[38] C. Ghosh and A. Paul, Acta Materialia 57 (2009) 493-502.

Google Scholar

[39] M.G. Mendiratta, DM Dimiduk. Mater Res Soc Symp Proc 1989; 133: 441-446.

Google Scholar

[40] M.G. Mendiratta, D.M. Dimiduk, Scripta Metallurgica et Materialia 25 (1991) 237-242.

DOI: 10.1016/0956-716x(91)90387-g

Google Scholar

[41] P.R. Subramanian, T.A. Parthasarathy, M.G. Mendiratta, D.M. Dimiduk. Scripta Metallurgica et Materialia 32 (199) 1227-1232.

DOI: 10.1016/0956-716x(95)00130-n

Google Scholar

[42] M.R. Jackson, B.P. Bewlay, R.G. Rowe, D.W. Skelly, H.A. Lipsitt. JOM 48 (1996) 39-44.

DOI: 10.1007/bf03221361

Google Scholar

[43] Bewlay BP, Jackson MR, Subramanian PR, Zhao JC. Metall Mater Trans A 2003; 34: 2043-2052.

Google Scholar

[44] T. Nakanishi, M. Takeyama, A. Noya, Journal of Applied Physics 77 (1995) 948-950.

Google Scholar

[45] S. Matteson, J. Rothi, M.A. Nicolet. Radiation Effects and Defects in Solids 1979; 42: 217.

Google Scholar

[46] J.Y. Cheng, LJ. Chen, Journal of Applied Physics; 69 (1991) 2161-2168.

Google Scholar

[47] S.Y. Jang, S.M. Lee, H.K. Baik, Journal of Materials Science: Materials in Elect ronics 7 (1996) 271-278.

Google Scholar

[48] C. Milanese, V. Buscaglia, F. Maglia, U. Anselmi-Tamburini Acta Materialia 2003 (51) 4837-4846.

DOI: 10.1016/s1359-6454(03)00323-9

Google Scholar

[49] F. Mahmood, H. Ahmed, M. Suleman and M.M. Ahmed, Jpn. J. Appl. Phys. Part 2 – Lett. 30 (1991) p. L1418-L1421.

Google Scholar

[50] S.Y. Jang, S.M. Lee and H.K. Baik, J. Mater. Sci: Mater. Electron. 7 (1996) 271 -278.

Google Scholar

[51] S.Q. Wang, Conference Proceeding VLSI IX, Materials Research Society (1994) 31.

Google Scholar

[52] K. Holloway and P.M. Fryer, Applied Phyics Letters 57 (1990) 1736-1738.

Google Scholar

[53] T. Laurila, K. Zeng, J.K. Kivilahti, J. Molarius and I. Suni, Thin Solid Films 3 (2000) 64-67.

DOI: 10.1016/s0040-6090(00)01102-0

Google Scholar

[54] C.K. Hu, M.B. Small and J.E. Lewis. Proc. 3rd IEEE VLSI Multilevel Interconnection Conf. (1986) p.181.

Google Scholar

[55] D.M. Shah, D. Berczik, D.L. Anton and R. Hecht, Mater. Sci.Eng. A 155 (1992) p.45.

Google Scholar

[56] F. Christian, H. Sohma, T.Tanaka, H.Tanaka, K. Ohsasa and T. Narita, Mater. Trans. Jim. 39 (1998) p.286.

Google Scholar

[57] C. Milanese, V. Buscaglia, F. Maglia and U. Anselmi-Tamburini, J. Phys. Chem. B. 106 (2002) p.5859.

Google Scholar

[58] X.M. Tao, P. Jund, C. Colinet and J.C. Tedenac, Phys. Rev. B. 80 (2009) p.10.

Google Scholar

[59] Y. Chen, A.N. Kolmogorov, D.G. Pettifor, J.X. Shang and Y. Zhang, Phys. Rev. B. 82 (2010) 184104.

Google Scholar

[60] S. Roy, Interdiffusion studies in Group IVB, VB and VIB Metal-Silicon systems, (2014).

Google Scholar

[61] Y. Yamamoto, H. Miyanaga, T. Amazawa, T. Sakai, IEEE Transactions On Electron Devices  32 (1985) 1231-1239.

DOI: 10.1109/t-ed.1985.22106

Google Scholar

[62] S.S. Simeonov, E.I. Kafedjiiska, A.L. Guerassimov, Thin Solid Films 115 (1984) 291-298.

DOI: 10.1016/0040-6090(84)90092-0

Google Scholar

[63] G. Kano, S. Takayanagi, IEEE Transactions On Electron Devices  14 (1967) 822-829.

Google Scholar

[64] V.Q. Ho, J Electronic Materials 16 (1987) 329.

Google Scholar

[65] M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, Y. Tonooka Proceedings of SPIE (2009) 7379.

Google Scholar

[66] E. Schubert, F. Frost, B. Ziberi, G. Wagner, H. Neumann, B. Rauschenbach, Journal of Vacuum Science and Technology: Microelectronics and Nanometer Structures 23 (2005) 959-965.

DOI: 10.1116/1.1924610

Google Scholar

[67] H. Takenaka, H. Ito, T. Haga, T. Kawamura, Journal of Synchrotron Radiation 5 (1998) 708-710.

Google Scholar

[68] I. Nedelcu,  R.W.E. van de Kruijs, A.E. Yakshin,  F. Bijkerk, Journal of Applied Physics 103 (2008) 083549.

DOI: 10.1063/1.2907964

Google Scholar

[69] M.Z. Alam, B. Venkataraman, B. Sarma, D.K. Das, Journal of Alloys Compounds 487 (2009) 335-340.

Google Scholar

[70] J.C. Zhao, M.R. Jackson, R.R. Peluso, Materials Science and Engneering 372A (2004) 21-27.

Google Scholar

[71] B.P. Bewlay, M.R. Jackson, P.R. Subramanian, J.C. Zhao, Metallurgical Materials Transactions A 34 (2003) 2043-2052.

Google Scholar

[72] M. Lehmann, G. Saemann-Ischenko, H. Adrian, C. Nölscher. Physica 1981; 107: 473-474.

DOI: 10.1016/0378-4363(81)90540-4

Google Scholar

[73] O. Hassomeris, G. Schumacher, M. Krüger, M. Heilmaier, J. Banhart, Intermetallics 19 (2011) 470-475.

DOI: 10.1016/j.intermet.2010.11.003

Google Scholar

[74] N. Ponwieser, W. Paschinger, A. Ritscher, J.C. Schuster, K.W. Richter. Intermetallics 19 (2011) 409-421.

Google Scholar

[75] J. Das, R. Mitra, S.K. Roy Intermetallics 19 (2011) 1-8.

Google Scholar

[76] S. Knittel, S. Mathieu, M. Vilasi, Intermetallics 18 (2010) 2267-2274.

Google Scholar

[77] L. Ingemarsson, M. Halvarsson, J. Engkvist, T. Jonsson, K. Hellström, L.G. Johansson, J.E. Svensson Intermetallics 18 (2010) 633-640.

DOI: 10.1016/j.intermet.2009.10.019

Google Scholar

[78] L. Ingemarsson, M. Halvarsson, K. Hellström, T. Jonsson, M. Sundberg, L.G. Johansson, J.E. Svensson, Intermetallics 18 (2010) 77-86.

DOI: 10.1016/j.intermet.2009.06.013

Google Scholar

[79] J.Y. Byun, J.K. Yoon, G.H. Kim, J.S. Kim, C.S. Choi, Scripta Materialia 46 (2002) 537-542.

Google Scholar

[80] J.K. Yoon, J.Y. Byun, G.H. Kim, J.S. Kim, C.S. Choi, Thin Solid Films 405 (2002) 170-178.

Google Scholar

[81] J.K. Yoon, J.Y. Byun, G.H. Kim, J.S. Kim, C.S. Choi, Surface and Coatings Technolohy 155 (2002) 85-95.

Google Scholar

[82] J.K. Yoon, J.K. Lee, K.H. Lee, J.Y. Byun, G.H. Kim, K.T. Hong, Intermetallics 11 (2003) 687-696.

Google Scholar

[83] P.C. Tortorici, M.A. Dayananda, Metallurgical and Materials Transactions A 30 (1999) 545-550.

Google Scholar

[84] P.C. Tortorici, M.A. Dayananda, Scripta Materialia; 38 (1998) 1863-1869.

Google Scholar

[85] A. Paul, Chapter 4: Microstructural Evolution by Reaction–Diffusion: Bulk, Thin Film, and Nanomaterials, Handbook of Solid State Diffusion, Volume 2: Diffusion Analysis in Material Applications, Elsevier, Amsterdam, (2017).

DOI: 10.1016/b978-0-12-804548-0.00004-9

Google Scholar

[86] M. F. Bain, B. M. Armstrong and H. S. Gamble, Vacuum. 64 (2002) 227-32.

Google Scholar

[87] K. Kurokawa, H. Matsuoka and H. Takahashi, Transtech Publications Ltd, Zurich Uetikon (1997) 885-92.

Google Scholar

[88] J. K. Yoon, K. W. Lee, S. J. Chung, I. J. Shon, J. M. Doh and G. H. Kim, Journal of Alloys and Compounds 420 (2006) 199-106.

Google Scholar

[89] C. Gelain, A. Cassuto and P. Legoff, Oxidation of Metals 3 (1971) 153-69.

Google Scholar

[90] K. H. Lee, J. K. Yoon, J. K. Lee, J. M. Doh, K. T. Hong and W. Y. Yoon, Surf. Coat. Technol., 187 (2004) 146-53.

Google Scholar

[91] S. L. Kharatyan, H. A. Chatilyan and A. B. Harutyunyan, Def. Diff. Forum 194-199 (2001) 1557-62.

Google Scholar

[92] R. W. Bartlett, P. A. Larssen and P. R. Gage, Transactions of the Metallurgical Society of AIME. 230 (1964) 1528-34.

Google Scholar

[93] E. Ma, B. S. Lim, M. A. Nicolet, N. S. Alvi and A. H. Hamdi, Journal of Electronic Materials 17 (1988) 207-11.

Google Scholar

[94] P. R. Gage and R. W. Bartlett: Transactions of the Metallurgical Society of AIME, 233 (1965) 832-34.

Google Scholar

[95] J. H. Liang and D. S. Chao: Surface and Coatings Technology 140 (2001) 116-21.

Google Scholar

[96] C. Gelain, A. Cassuto and P. Legoff, Oxidation of Metals 1 (1971) 115-38.

Google Scholar

[97] D. Bhattacharyya, A.K. Poswal, M. Senthilkumar, P.V. Satyam, A.K. Balamurugan, A.K. Tyagi, N.C. Das, Applied Suface Science 214 (2003) 259-271.

DOI: 10.1016/s0169-4332(03)00360-x

Google Scholar

[98] E. Nebauer, U. Merkel and J. Würfl, Semiconductor Science and Technology 12 (1997) 1072-1078.

Google Scholar

[99] J. Lajzerowicz, J. Torres, G. Goltz and R. Pantel, Thin Solid Films 140 (1986) 23-28.

DOI: 10.1016/0040-6090(86)90155-0

Google Scholar

[100] J. Baglin, J. Dempsey, W. Hammer, F. dheurle, S. Petersson and C. Serrano, Journal of Electronic Materials 8 (1979) 641-61.

Google Scholar