Investigation of Solid State Diffusion Processes Involved in the Zinc Oxide Sulfidation Reaction

Article Preview

Abstract:

Sulfidation of undoped and aluminum doped zinc oxide materials has been performed by TGA under a H2S atmosphere in order to evaluate the impact of the doping element on sulfidation reaction kinetics and mechanism. The presence of aluminum seems to slow-down the reaction kinetics. This phenomenon might be explained by a modification of the solid state diffusion processes involved in ZnO sulfidation reaction and the related ZnS outward growth, assuming the presence of aluminum atoms inside ZnO and ZnS phases. In order to determine solid state diffusion mechanisms controlling the reaction kinetics, molecular dynamics simulations were performed using a Coulomb-Buckingham potential. Firstly, the diffusion of the different elements (Zn, O, S) was simulated for both the oxide and sulfide phases considering a vacancy mechanism. Secondly, simulations of the oxide phase doped by a trivalent cation were also performed. The results obtained in this preliminary work are presented and compared to the literature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-110

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Soustelle in: Cinétique Hétérogène 1, modélisation des mécanismes, edited by Hermes sciences publications, Lavoisier (2006).

Google Scholar

[2] H. Toulhoat and P. Raybaud in: Catalysis by transition metal sulphides from molecular theory to industrial application, edited by Editions Technip (2013)C. Ratnasamy and J.P. Wagner: Catalysis Reviews, Vol. 51 (2009), p.325.

DOI: 10.1016/j.jcat.2013.06.011

Google Scholar

[4] J.B. Chung and J.S. Chung: Chem. Eng. Sci. Vol. 60 (2005), p.1515.

Google Scholar

[5] V. Girard, A. Baudot, D. Chiche, D. Bazer-Bachi, C. Bounie and C. Geantet: Fuel Vol. 128 (2014), p.220.

DOI: 10.1016/j.fuel.2014.02.058

Google Scholar

[6] A. Angelis: Appl; Catal. B-Environ. Vol. 113-114 (2012), p.37.

Google Scholar

[7] D. Chiche, C. Diverchy, A.C. Lucquin, F. Porcheron and F. Defoort: Oil Gas Sci. Technol. Vol. 68 (2013), p.707.

DOI: 10.2516/ogst/2013175

Google Scholar

[8] L. Neveux, D. Chiche, J. Pérez-Pellitero, L. Favergeon, A. -S. Gay and M. Pijolat: Phys. Chem. Chem. Phys. Vol. 15 (2013), p.1532.

DOI: 10.1039/c2cp42988h

Google Scholar

[9] L. Neveux, D. Chiche, D. Bazer-Bachi, L. Favergeon and M. Pijolat: Chem. Eng. J. Vol. 181-182 (2012), p.508.

DOI: 10.1016/j.cej.2011.09.019

Google Scholar

[10] J. Skrzypski, I. Bezverkhyy, O. Heintz and J. -P. Bellat: Ind. Eng. Res. Vol. 50 (2011), p.5714.

Google Scholar

[11] P.R. Westmoreland and D.P. Harrisson: Environ. Sci. Technol. Vol. 10 (1976), p.659.

Google Scholar

[12] S. Plimpton: J. Comput. Phys. Vol. 117 (1995), p.1.

Google Scholar

[13] R.A. Buckingham: P. Roy. Soc. Lond. A Mat. Vol. 168 (1938), p.264.

Google Scholar

[14] D.J. Binks in: Computational modelling of Zinc Oxide & related oxide ceramics thesis manuscript, University of surrey (1994).

Google Scholar

[15] K. Wright and R.A. Jackson: J. Mater. Chem. Vol. 5 (1995), p. (2037).

Google Scholar

[16] J.E. Basconi and M. R. Shirts: J. Chem. Theory Comput. Vol. 9 (2013), p.2887.

Google Scholar

[17] F. Agullo-Lopez, C.R.A. Catlow and P.D. Townsend in: Point Defect in Materials, Academic Press: London (1988).

Google Scholar

[18] L. Minervini, M.O. Zacate and R.W. Grimes: Solid State Ionics Vol. 116 (1999), p.339.

Google Scholar

[19] F. Shüth, S. Kenneth, W. Sing and J. Weitkamp in: Handbook of Porous solids, volume 3 edited by Wiley-VCH (2002).

Google Scholar

[20] F.A. Kröger and H.J. Vink in: Relations between the concentrations of imperfections in crystallines solids, edited by F. Seitz and D Turnbull, volume 3 of Solid State Physics Advances in Research and Applications, Academic Press (1956).

DOI: 10.1016/s0081-1947(08)60135-6

Google Scholar

[21] G.W. Tomlins, J.L. Routbort and T.O. Mason: J. Appl. Phys. Vol. 87 (2000), p.117.

Google Scholar

[22] M.A. Nogueira, W.B. Ferraz and A.C.S. Sabioni: Materials Research Vol. 6 (2003), p.167.

Google Scholar

[23] G.W. Tomlins, J.L. Routbort and T.O. Mason: J. Am. Ceram. Soc. Vol. 81 (1998), p.869.

Google Scholar

[24] H. Haneda, I. Sakaguchi, A. Watanabe, T. Ishigaki and J. Tanaka: J. Electroceram. Vol. 4 (1999), p.41.

Google Scholar

[25] J.W. Moore and E.L. Williams: Discuss. Farad. Soc. Vol. 28 (1959), p.86.

Google Scholar

[26] J.W. Hoffman and I. Lauder: Trans. Faraday Soc. Vol; 60 (1970), p.2346.

Google Scholar

[27] A.R. Cooper, R. Robin and A.H. Heuer: J. Appl. Phys. Vol. 44 (1973), p.3770.

Google Scholar

[28] E.A. Secco: J. Chem. Phys. Vol. 29 (1958), p.406.

Google Scholar

[29] G.H. Blount, G.A. Marlor and R.H. Bube: J. Appl. Phys. Vol. 38 (1967), p.3795.

Google Scholar