Nanomaterials Applications in Modern Metallurgical Processes

Article Preview

Abstract:

In recent years, improvement of metals mechanical properties becomes one of the main challenges in materials and particularly in metallurgical industry. Mostly, an alloying process is typically applied to reach metals enhanced performance. This work, however, describes a different methodology, where WC and TiC nanoparticles used as a modifiers and then gas-dynamic treatment (GDT) are applied. These processes were investigated on a hypoeutectic casting aluminum A356 alloy. Microstructural evaluation illustrated that a coarse Al grains were refined as well as eutectic Si particles were formed. Subsequent mechanical properties tests revealed that aluminum elongation enhanced while strength remained unchanged. Addition of WC and TiC enhanced the elongation by 20-60%, depends on the mold area. A combined treatment, using GDT with addition of TiCN nanoparticles showed even improvement in both, elongation and strength by 18 and 19%, respectively. Moreover, based on the electron microscopy studies, this behavior was attributed to a grain-size strengthening mechanism, where a high concentration of grain boundaries serves as dislocation movement blockers

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-41

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.D. Callister, Materials Science and Engineering, 7th ed., John Wiley & Sons Inc.: Hoboken, NJ, USA, (2007).

Google Scholar

[2] Y. Birol, AlB3 master alloy to grain refine AlSi10Mg and AlSi12Cu aluminum foundry alloys, J. Alloys Compd. 513 (2012) 150–153.

DOI: 10.1016/j.jallcom.2011.10.010

Google Scholar

[3] P.L. Schaffer, A.K. Dahle, Settling behavior of different grain refiners in aluminum, Mater. Sci. Eng. A 413–414 (2005) 373–378.

DOI: 10.1016/j.msea.2005.08.202

Google Scholar

[4] P.S. Mohanty, J.E. Gruzleski, Mechanism of grain refinement in aluminum, Acta Metall. Mater. 43 (1995) 2001–(2012).

Google Scholar

[5] C. Wang, M. Wang,; B. Yu, D. Chen, P. Qin, M. Feng; Q. Dai, The grain refinement behavior of TiB2 particles prepared with in situ technology, Mater. Sci. Eng. A 459 (2007) 238–243.

DOI: 10.1016/j.msea.2007.01.013

Google Scholar

[6] A. Daoud, M. Abo-Elkhar, Influence of Al2O3 or ZrO2 particulate addition on the microstructure aspects of AlNi and AlSi alloys, J. Mater. Process. Technol. 120 (2002) 296–302.

DOI: 10.1016/s0924-0136(01)01067-6

Google Scholar

[7] N.S. Chou, J.L. Huang, D.F. Lii, H.H. Lu, The mechanical properties of Al2O3/aluminum alloy A356 composite manufactured by squeeze casting, J. Alloys Compd. 419 (2006) 98–102.

DOI: 10.1016/j.jallcom.2005.10.006

Google Scholar

[8] Y. Han, K. Le, J. Wang, D. Shu, B. Sun, Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminum, Mater. Sci. Eng. A 405 (2005) 306–312.

DOI: 10.1016/j.msea.2005.06.024

Google Scholar

[9] A. Das, H.R. Kotadia, Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy, Mater. Chem. Phys. 125 (2011) 853–859.

DOI: 10.1016/j.matchemphys.2010.09.035

Google Scholar

[10] S. Zhang, Y. Zhao, X. Cheng, G. Chen, Q. Dai, High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy, J. Alloys Compd. 470 (2009) 168–172.

DOI: 10.1016/j.jallcom.2008.02.091

Google Scholar

[11] H.T. Lu, L.C. Wang, S.K. Kung, Grain Refining in A356 Alloys, J. Chin. Foundrym. Assoc. 29 (1981) 10–18.

Google Scholar

[12] G.K. Sigworth, M.M. Guzowski, Grain refining of Hypo-eutectic Al-Si alloys, ASF Trans. 93 (1985) 907–912.

Google Scholar

[13] L. Clapham, R.W. Smith, The mechanism of the partial modification of Al-Si eutectic alloys, J. Crys. Growth 79 (1-3) part 2 (1986) 866-873.

DOI: 10.1016/0022-0248(86)90566-x

Google Scholar

[14] S.A. Kori, B.S. Murty, M. Chakraborty, Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium, Mater. Sci. Eng. A 283 (2000) 94-104.

DOI: 10.1016/s0921-5093(99)00794-7

Google Scholar

[15] Z.M. Shi, Q. Wang, G. Zhao, R.Y. Zhang, Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys, Mater. Sci. Eng. A 626 (2015) 102–107.

DOI: 10.1016/j.msea.2014.12.062

Google Scholar

[16] A.D.L. Torre, R. Pérez-Bustamante, J. Camarillo-Cisneros, C.D. Gómez-Esparza, H.M. Medrano-Prieto, R. Martínez-Sánchez, Mechanical properties of the A356 aluminum alloy modified with La/Ce, J. Rare Earths 31 (2013) 811–816.

DOI: 10.1016/s1002-0721(12)60363-9

Google Scholar

[17] M.C. Flemings, R.G. Riek, K.P. Young, Rheocasting, Mater. Sci. Eng. 25 (1976) 103-117.

Google Scholar

[18] P. Kapranos, P.J. Ward, H.V. Atkinson, D.H. Kirkwood, Near net shaping by semi-solid metal processing, Mater. Des. 21 (2000) 387-394.

DOI: 10.1016/s0261-3069(99)00077-1

Google Scholar

[19] B.C. Liao, Y.K. Park, H.S. Ding, Effects of rheocasting and heat treatment on microstructure and mechanical properties of A356 alloy, Mater. Sci. Eng. A 528(3) (2011) 986-995.

DOI: 10.1016/j.msea.2010.09.059

Google Scholar

[20] S.A. Sajjadi, M.T. Parizi, H.R. Ezatpour, A. Sedghic, Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties, J. Alloys Compd. 511 (2012) 226–231.

DOI: 10.1016/j.jallcom.2011.08.105

Google Scholar

[21] M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites, Mater. Des. 66 (2015) 150–161.

DOI: 10.1016/j.matdes.2014.10.048

Google Scholar

[22] H. Khodaverdizadeh, B. Niroumand, Effects of applied pressure on microstructure and mechanical properties of squeeze cast ductile iron, Mater. Des. 32 (2011) 4747–4755.

DOI: 10.1016/j.matdes.2011.06.040

Google Scholar

[23] R.G. Guan, Microstructure and properties of squeeze cast A356 alloy processed with a vibrating slope, J. Mater. Process. Technol. 229 (2016) 514–519.

DOI: 10.1016/j.jmatprotec.2015.09.038

Google Scholar

[24] V. Selivorstov, Y. Dotsenko, T. Selivorstova, N. Dotsenko, The use of gas-dynamic pressure to improve the mechanical properties of aluminum casting alloys with high iron content, Syst. Technol. 2 (2015) 68–74.

Google Scholar

[25] A. Lekatou, A.E. Karantzalis, A. Evangelou, V. Gousia, G. Kaptay, Z. Gácsi, P. Baumli, A. Simon, Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour, J. Mater. Des. 65 (2015).

DOI: 10.1016/j.matdes.2014.08.040

Google Scholar

[26] A.K. Chattopadhyay, P. Roy, S.K. Sarangi, Study of wettability test of pure aluminum against uncoated and coated carbide inserts, Surface Coat. Technol. 204 (2009) 410–417.

DOI: 10.1016/j.surfcoat.2009.07.038

Google Scholar

[27] K. Borodianskiy, A. Kossenko, M. Zinigrad, Improvement of the mechanical properties of Al-Si alloys by TiC nanoparticles, Metall. Mat. Trans. A 44 (8) (2013) 4948-4953.

DOI: 10.1007/s11661-013-1850-4

Google Scholar

[28] K. Lee, Y.N. Kwon, J. Lee, Effects of eutectic silicon particles on tensile properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, casting-forging, and squeeze-casting processes, Alloys Compd. 461 (2008).

DOI: 10.1016/j.jallcom.2007.07.038

Google Scholar

[29] K. Borodianskiy, M. Zinigrad, Modification Performance of WC Nanoparticles in Aluminum and an Al-Si Casting Alloy, Metall. Mat. Trans. B 47 (2) (2016) 1302-1308.

DOI: 10.1007/s11663-016-0586-0

Google Scholar

[30] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17(1) (2002) 5-8.

DOI: 10.1557/jmr.2002.0002

Google Scholar

[31] S.X. Li, G.R. Cui, Dependence of strength, elongation, and toughness on grain size in metallic structural materials, J. Appl. Physics 101 (2007) 83525-83530.

DOI: 10.1063/1.2720184

Google Scholar

[32] E.O. Hall, The deformation and aging of mild steel: III discussion and results, Proc. Phys. Soc. B 64 (1951) 747-753.

DOI: 10.1088/0370-1301/64/9/303

Google Scholar

[33] G. Levi, M. Bamberger, W.D. Kaplan, Wetting of porous titanium carbonitride by Al-Mg-Si alloys, Acta Mater. 47 (1999) 3927-3934.

DOI: 10.1016/s1359-6454(99)00198-6

Google Scholar

[34] K. Wang, H.Y. Jiang, Y.X. Wang, Q.D. Wang, B. Ye, W.J. Ding, Microstructure and mechanical properties of hypoeutectic Al-Si composite reinforced with TiCN nanooarticles, Mater. Des. 95 (2016) 545-554.

DOI: 10.1016/j.matdes.2016.01.144

Google Scholar