[1]
W.D. Callister, Materials Science and Engineering, 7th ed., John Wiley & Sons Inc.: Hoboken, NJ, USA, (2007).
Google Scholar
[2]
Y. Birol, AlB3 master alloy to grain refine AlSi10Mg and AlSi12Cu aluminum foundry alloys, J. Alloys Compd. 513 (2012) 150–153.
DOI: 10.1016/j.jallcom.2011.10.010
Google Scholar
[3]
P.L. Schaffer, A.K. Dahle, Settling behavior of different grain refiners in aluminum, Mater. Sci. Eng. A 413–414 (2005) 373–378.
DOI: 10.1016/j.msea.2005.08.202
Google Scholar
[4]
P.S. Mohanty, J.E. Gruzleski, Mechanism of grain refinement in aluminum, Acta Metall. Mater. 43 (1995) 2001–(2012).
Google Scholar
[5]
C. Wang, M. Wang,; B. Yu, D. Chen, P. Qin, M. Feng; Q. Dai, The grain refinement behavior of TiB2 particles prepared with in situ technology, Mater. Sci. Eng. A 459 (2007) 238–243.
DOI: 10.1016/j.msea.2007.01.013
Google Scholar
[6]
A. Daoud, M. Abo-Elkhar, Influence of Al2O3 or ZrO2 particulate addition on the microstructure aspects of AlNi and AlSi alloys, J. Mater. Process. Technol. 120 (2002) 296–302.
DOI: 10.1016/s0924-0136(01)01067-6
Google Scholar
[7]
N.S. Chou, J.L. Huang, D.F. Lii, H.H. Lu, The mechanical properties of Al2O3/aluminum alloy A356 composite manufactured by squeeze casting, J. Alloys Compd. 419 (2006) 98–102.
DOI: 10.1016/j.jallcom.2005.10.006
Google Scholar
[8]
Y. Han, K. Le, J. Wang, D. Shu, B. Sun, Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminum, Mater. Sci. Eng. A 405 (2005) 306–312.
DOI: 10.1016/j.msea.2005.06.024
Google Scholar
[9]
A. Das, H.R. Kotadia, Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy, Mater. Chem. Phys. 125 (2011) 853–859.
DOI: 10.1016/j.matchemphys.2010.09.035
Google Scholar
[10]
S. Zhang, Y. Zhao, X. Cheng, G. Chen, Q. Dai, High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy, J. Alloys Compd. 470 (2009) 168–172.
DOI: 10.1016/j.jallcom.2008.02.091
Google Scholar
[11]
H.T. Lu, L.C. Wang, S.K. Kung, Grain Refining in A356 Alloys, J. Chin. Foundrym. Assoc. 29 (1981) 10–18.
Google Scholar
[12]
G.K. Sigworth, M.M. Guzowski, Grain refining of Hypo-eutectic Al-Si alloys, ASF Trans. 93 (1985) 907–912.
Google Scholar
[13]
L. Clapham, R.W. Smith, The mechanism of the partial modification of Al-Si eutectic alloys, J. Crys. Growth 79 (1-3) part 2 (1986) 866-873.
DOI: 10.1016/0022-0248(86)90566-x
Google Scholar
[14]
S.A. Kori, B.S. Murty, M. Chakraborty, Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium, Mater. Sci. Eng. A 283 (2000) 94-104.
DOI: 10.1016/s0921-5093(99)00794-7
Google Scholar
[15]
Z.M. Shi, Q. Wang, G. Zhao, R.Y. Zhang, Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys, Mater. Sci. Eng. A 626 (2015) 102–107.
DOI: 10.1016/j.msea.2014.12.062
Google Scholar
[16]
A.D.L. Torre, R. Pérez-Bustamante, J. Camarillo-Cisneros, C.D. Gómez-Esparza, H.M. Medrano-Prieto, R. Martínez-Sánchez, Mechanical properties of the A356 aluminum alloy modified with La/Ce, J. Rare Earths 31 (2013) 811–816.
DOI: 10.1016/s1002-0721(12)60363-9
Google Scholar
[17]
M.C. Flemings, R.G. Riek, K.P. Young, Rheocasting, Mater. Sci. Eng. 25 (1976) 103-117.
Google Scholar
[18]
P. Kapranos, P.J. Ward, H.V. Atkinson, D.H. Kirkwood, Near net shaping by semi-solid metal processing, Mater. Des. 21 (2000) 387-394.
DOI: 10.1016/s0261-3069(99)00077-1
Google Scholar
[19]
B.C. Liao, Y.K. Park, H.S. Ding, Effects of rheocasting and heat treatment on microstructure and mechanical properties of A356 alloy, Mater. Sci. Eng. A 528(3) (2011) 986-995.
DOI: 10.1016/j.msea.2010.09.059
Google Scholar
[20]
S.A. Sajjadi, M.T. Parizi, H.R. Ezatpour, A. Sedghic, Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties, J. Alloys Compd. 511 (2012) 226–231.
DOI: 10.1016/j.jallcom.2011.08.105
Google Scholar
[21]
M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites, Mater. Des. 66 (2015) 150–161.
DOI: 10.1016/j.matdes.2014.10.048
Google Scholar
[22]
H. Khodaverdizadeh, B. Niroumand, Effects of applied pressure on microstructure and mechanical properties of squeeze cast ductile iron, Mater. Des. 32 (2011) 4747–4755.
DOI: 10.1016/j.matdes.2011.06.040
Google Scholar
[23]
R.G. Guan, Microstructure and properties of squeeze cast A356 alloy processed with a vibrating slope, J. Mater. Process. Technol. 229 (2016) 514–519.
DOI: 10.1016/j.jmatprotec.2015.09.038
Google Scholar
[24]
V. Selivorstov, Y. Dotsenko, T. Selivorstova, N. Dotsenko, The use of gas-dynamic pressure to improve the mechanical properties of aluminum casting alloys with high iron content, Syst. Technol. 2 (2015) 68–74.
Google Scholar
[25]
A. Lekatou, A.E. Karantzalis, A. Evangelou, V. Gousia, G. Kaptay, Z. Gácsi, P. Baumli, A. Simon, Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour, J. Mater. Des. 65 (2015).
DOI: 10.1016/j.matdes.2014.08.040
Google Scholar
[26]
A.K. Chattopadhyay, P. Roy, S.K. Sarangi, Study of wettability test of pure aluminum against uncoated and coated carbide inserts, Surface Coat. Technol. 204 (2009) 410–417.
DOI: 10.1016/j.surfcoat.2009.07.038
Google Scholar
[27]
K. Borodianskiy, A. Kossenko, M. Zinigrad, Improvement of the mechanical properties of Al-Si alloys by TiC nanoparticles, Metall. Mat. Trans. A 44 (8) (2013) 4948-4953.
DOI: 10.1007/s11661-013-1850-4
Google Scholar
[28]
K. Lee, Y.N. Kwon, J. Lee, Effects of eutectic silicon particles on tensile properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, casting-forging, and squeeze-casting processes, Alloys Compd. 461 (2008).
DOI: 10.1016/j.jallcom.2007.07.038
Google Scholar
[29]
K. Borodianskiy, M. Zinigrad, Modification Performance of WC Nanoparticles in Aluminum and an Al-Si Casting Alloy, Metall. Mat. Trans. B 47 (2) (2016) 1302-1308.
DOI: 10.1007/s11663-016-0586-0
Google Scholar
[30]
R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17(1) (2002) 5-8.
DOI: 10.1557/jmr.2002.0002
Google Scholar
[31]
S.X. Li, G.R. Cui, Dependence of strength, elongation, and toughness on grain size in metallic structural materials, J. Appl. Physics 101 (2007) 83525-83530.
DOI: 10.1063/1.2720184
Google Scholar
[32]
E.O. Hall, The deformation and aging of mild steel: III discussion and results, Proc. Phys. Soc. B 64 (1951) 747-753.
DOI: 10.1088/0370-1301/64/9/303
Google Scholar
[33]
G. Levi, M. Bamberger, W.D. Kaplan, Wetting of porous titanium carbonitride by Al-Mg-Si alloys, Acta Mater. 47 (1999) 3927-3934.
DOI: 10.1016/s1359-6454(99)00198-6
Google Scholar
[34]
K. Wang, H.Y. Jiang, Y.X. Wang, Q.D. Wang, B. Ye, W.J. Ding, Microstructure and mechanical properties of hypoeutectic Al-Si composite reinforced with TiCN nanooarticles, Mater. Des. 95 (2016) 545-554.
DOI: 10.1016/j.matdes.2016.01.144
Google Scholar