Ion Selection by Redox Changes in a Soluble Helical Polythiophene Channel

Article Preview

Abstract:

Molecular dynamics are applied to simulate molecular motions in an aqueous solution of two soluble derivatives of a 100-ring polythiophene chain – one with sidechains terminating in a SO3 group, the other in NMe3+. Each chain is in a helical conformation defining a water-containing central channel along whose axis the dynamics of ions from the solution to the channel’s axial electrostatic potential is simulated. The profiles of these potentials distinguish the tendencies of the two channel species to occlude water molecules on their surfaces. Invoking the conductive polymer characteristics of polythiophene that can accomplish the transfer of electrons between the aromatic rings and redox reagents in the solution, the effect of this transfer on the axial potential and migration is followed. The electrostatic potential monitors differences in the association of the solvent molecules with the two species of helical polymer and shows that while Na+ and Cl ions do not enter the channel in the absence of the redox changes, an ion with a selected charge does so spontaneously when appropriate electric charge is transferred to the channel. This enables the selected ion to travel about 10 – 20Å in the channel without the application of an external electric field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-15

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Ballardini, V. Balzani, A. Credi, M.T. Gandolfi, M. Venturi, Artificial molecular-level machines: which energy to make them work? Acc. Chem. Res. 34 (2001).

DOI: 10.1021/ar000170g

Google Scholar

[2] V.A. Cuddapah, H. Sontheimer, Ion channels and transporters in cancers. 2. Ion channels and the control of cancer cell migration, American Journal of Physiology 301 (2001) C541-549.

DOI: 10.1152/ajpcell.00102.2011

Google Scholar

[3] K.M. Stroka, H. Jiang, S-Hs. Chen, Z. Tong, D. Wirtz, S. X Sun, K. Konstantopoulos, Water permeation drives tumour cell migration in confined microenvironments, Cell 153 (2014) 611-623.

DOI: 10.1016/j.cell.2014.02.052

Google Scholar

[4] M. Podewitz, J.D. van Beek, M. Wörle, T. Ott, D. Stein, H. Rüegger, B.H. Meier, M. Reiher, H. Grützmacher, Ion dynamics in confined spaces: sodium ion mobility in icosahedral container molecules, Angewandte Chemie (Int. ) 49 (2010) 7465–7469.

DOI: 10.1002/anie.201003441

Google Scholar

[5] D.A. Morton-Blake, D. Leith, A molecular dynamics investigation of the stability of a charged electroactive polymer monolayer, Journal of Molecular Liquids 144 (2009) 75-88.

DOI: 10.1016/j.molliq.2008.08.004

Google Scholar

[6] Xin Li, Author VitaeBingqing Wei, Supercapacitors based on nanostructured carbon, Nano Energy 2 (2013) 159–173.

Google Scholar

[7] D. Nicholson, N. Quirke, Ion pairing in confined electrolytes, Molecular Simulation 29 (2003) 287-290.

DOI: 10.1080/0892702031000078427

Google Scholar

[8] Hs. -Ch. Yanga, Q. Huang, Ch. -Y. Hua, Y-K. Lan, Ch. -L Chen, A Molecular Dynamics Simulation Study on Ion-Conducting Polymer sPBI-PS(Li+), J. Chinese Chem. Soc. 50 (2003) 529-538.

DOI: 10.1002/jccs.200300078

Google Scholar

[9] N.S. Murthy, L.W. Shacklette, R.H. Baughman, The structure of metallic complexes of polyacetylene with alkali metals, J. Chem. Phys. 87 (1987) 2346.

Google Scholar

[10] D.A. Morton-Blake, An electrostatic investigation of alkali-metal-doped polyacetylene, Synthetic Metals 35 (1990).

DOI: 10.1016/0379-6779(90)90212-4

Google Scholar

[11] M. Stamm, J. Hocker, Structural changes in polyparaphenylene by the doping with AsF5 and alkali metals, J. Phys., Coll. C3 Suppl. 6 (1983).

DOI: 10.1051/jphyscol:19833130

Google Scholar

[12] R. O'Farrell, S. O'Dwyer, D.A. Morton-Blake, The transport of an ion through a channel formed by a helical electroactive polymer, Molecular Simulation 30 (2004).

DOI: 10.1080/08927020410001715355

Google Scholar

[13] D.A. Morton-Blake, B. Jenkins, I. Blake, The passage of an ion through a synthetic ion channel, Molecular Simulation 37 (2011).

DOI: 10.1080/08927022.2011.558507

Google Scholar

[14] P. Bäuerle, K. -U. Gaudl, G. Götz, Polythiophene functionalized with redoxactive groups, in H. Kuzmany, M. Mehring, S. Roth (Eds. ) , Electronic properties of polymers: orientation and dimensionality of conjugated systems, Springer (1992).

DOI: 10.1007/978-3-642-84705-9_71

Google Scholar

[15] K. Kaneto, K. Yoshino, Y. Inuishi, Electrical and optical properties of polythiophene prepared by electrochemical polymerization, Solid State Communications 46 (1983).

DOI: 10.1016/0038-1098(83)90454-4

Google Scholar

[16] J. Bartuš, Electrically conducting thiophene polymers, J. Macromol. Sci. A 28 (1991) 917-924.

DOI: 10.1080/00222339108054069

Google Scholar

[17] J.L. Brédas, F. Wudl, A.J. Heeger, Polarons and bipolarons in doped polythiophene: A theoretical investigation, Solid State Communications 63 577–580 (1987).

DOI: 10.1016/0038-1098(87)90856-8

Google Scholar

[18] M. Chayer, K. Faἲd, M. Leclerc, Highly Conducting Water-Soluble Polythiophene Derivatives, Chem. Mater. 9 (1997).

DOI: 10.1021/cm970238v

Google Scholar

[19] (see for example) C.W. Bunn, E. R. Howell, Structures of molecules and crystals of fluorocarbons, Nature, 174 (1954).

Google Scholar

[20] G. Tourillon, F. Garnier, Morphology and crystallographic structure of polythiophene and its derivatives, Mol. Cryst. Liq. Cryst. 118 (1985).

Google Scholar

[21] J.M. Feliu, M.F. Suárez-Herrera, Electrochemical properties of thin films of polythiophene polymerized on basal plane platinum electrodes in nonaqueous media, J. Phys. Chem. B 113 (2009) 1899-(1905).

DOI: 10.1021/jp8089837

Google Scholar

[22] M. Fu, G. Shi, F. Chen, X. Hong, Doping level change of polythiophene film during its electrochemical growth process, Phys. Chem. Chem. Phys. 4 (2002) 2685–2690.

DOI: 10.1039/b201041k

Google Scholar

[23] A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Amer. Chem. Soc. 114 (1972) 10024-10035.

DOI: 10.1021/ja00051a040

Google Scholar

[24] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269-6271.

DOI: 10.1021/j100308a038

Google Scholar

[25] J. Åquist, Ion-water interaction potentials derived from free energy perturnation simulations, J. Phys. Chem. 94 (1990) 8021-8024.

DOI: 10.1021/j100384a009

Google Scholar

[26] S.I. Lee, J.C. Rasaiah, Molecular dynamics simulations of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25°C, J. Phys. Chem. 100 (1996) 1420-5.

DOI: 10.1021/jp953050c

Google Scholar

[27] see, for example, A. Y. Toukmaji, J. A. Board Jr., Ewald summation techniques in perspective: a survey, Computer Physics Communications 95 (1996) 73–92.

DOI: 10.1016/0010-4655(96)00016-1

Google Scholar

[28] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburgh PA, (2003).

Google Scholar

[29] K.C. Gross, P.G. Seybold, C.M. Hadad, Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols, Internat. J. Quantum Chemistry 90 (2002) 445.

DOI: 10.1002/qua.10108

Google Scholar

[30] W. Smith, T. R. Forester, J. Molec. Graphics, 14 (1996) 136.

Google Scholar