[1]
R. Ballardini, V. Balzani, A. Credi, M.T. Gandolfi, M. Venturi, Artificial molecular-level machines: which energy to make them work? Acc. Chem. Res. 34 (2001).
DOI: 10.1021/ar000170g
Google Scholar
[2]
V.A. Cuddapah, H. Sontheimer, Ion channels and transporters in cancers. 2. Ion channels and the control of cancer cell migration, American Journal of Physiology 301 (2001) C541-549.
DOI: 10.1152/ajpcell.00102.2011
Google Scholar
[3]
K.M. Stroka, H. Jiang, S-Hs. Chen, Z. Tong, D. Wirtz, S. X Sun, K. Konstantopoulos, Water permeation drives tumour cell migration in confined microenvironments, Cell 153 (2014) 611-623.
DOI: 10.1016/j.cell.2014.02.052
Google Scholar
[4]
M. Podewitz, J.D. van Beek, M. Wörle, T. Ott, D. Stein, H. Rüegger, B.H. Meier, M. Reiher, H. Grützmacher, Ion dynamics in confined spaces: sodium ion mobility in icosahedral container molecules, Angewandte Chemie (Int. ) 49 (2010) 7465–7469.
DOI: 10.1002/anie.201003441
Google Scholar
[5]
D.A. Morton-Blake, D. Leith, A molecular dynamics investigation of the stability of a charged electroactive polymer monolayer, Journal of Molecular Liquids 144 (2009) 75-88.
DOI: 10.1016/j.molliq.2008.08.004
Google Scholar
[6]
Xin Li, Author VitaeBingqing Wei, Supercapacitors based on nanostructured carbon, Nano Energy 2 (2013) 159–173.
Google Scholar
[7]
D. Nicholson, N. Quirke, Ion pairing in confined electrolytes, Molecular Simulation 29 (2003) 287-290.
DOI: 10.1080/0892702031000078427
Google Scholar
[8]
Hs. -Ch. Yanga, Q. Huang, Ch. -Y. Hua, Y-K. Lan, Ch. -L Chen, A Molecular Dynamics Simulation Study on Ion-Conducting Polymer sPBI-PS(Li+), J. Chinese Chem. Soc. 50 (2003) 529-538.
DOI: 10.1002/jccs.200300078
Google Scholar
[9]
N.S. Murthy, L.W. Shacklette, R.H. Baughman, The structure of metallic complexes of polyacetylene with alkali metals, J. Chem. Phys. 87 (1987) 2346.
Google Scholar
[10]
D.A. Morton-Blake, An electrostatic investigation of alkali-metal-doped polyacetylene, Synthetic Metals 35 (1990).
DOI: 10.1016/0379-6779(90)90212-4
Google Scholar
[11]
M. Stamm, J. Hocker, Structural changes in polyparaphenylene by the doping with AsF5 and alkali metals, J. Phys., Coll. C3 Suppl. 6 (1983).
DOI: 10.1051/jphyscol:19833130
Google Scholar
[12]
R. O'Farrell, S. O'Dwyer, D.A. Morton-Blake, The transport of an ion through a channel formed by a helical electroactive polymer, Molecular Simulation 30 (2004).
DOI: 10.1080/08927020410001715355
Google Scholar
[13]
D.A. Morton-Blake, B. Jenkins, I. Blake, The passage of an ion through a synthetic ion channel, Molecular Simulation 37 (2011).
DOI: 10.1080/08927022.2011.558507
Google Scholar
[14]
P. Bäuerle, K. -U. Gaudl, G. Götz, Polythiophene functionalized with redoxactive groups, in H. Kuzmany, M. Mehring, S. Roth (Eds. ) , Electronic properties of polymers: orientation and dimensionality of conjugated systems, Springer (1992).
DOI: 10.1007/978-3-642-84705-9_71
Google Scholar
[15]
K. Kaneto, K. Yoshino, Y. Inuishi, Electrical and optical properties of polythiophene prepared by electrochemical polymerization, Solid State Communications 46 (1983).
DOI: 10.1016/0038-1098(83)90454-4
Google Scholar
[16]
J. Bartuš, Electrically conducting thiophene polymers, J. Macromol. Sci. A 28 (1991) 917-924.
DOI: 10.1080/00222339108054069
Google Scholar
[17]
J.L. Brédas, F. Wudl, A.J. Heeger, Polarons and bipolarons in doped polythiophene: A theoretical investigation, Solid State Communications 63 577–580 (1987).
DOI: 10.1016/0038-1098(87)90856-8
Google Scholar
[18]
M. Chayer, K. Faἲd, M. Leclerc, Highly Conducting Water-Soluble Polythiophene Derivatives, Chem. Mater. 9 (1997).
DOI: 10.1021/cm970238v
Google Scholar
[19]
(see for example) C.W. Bunn, E. R. Howell, Structures of molecules and crystals of fluorocarbons, Nature, 174 (1954).
Google Scholar
[20]
G. Tourillon, F. Garnier, Morphology and crystallographic structure of polythiophene and its derivatives, Mol. Cryst. Liq. Cryst. 118 (1985).
Google Scholar
[21]
J.M. Feliu, M.F. Suárez-Herrera, Electrochemical properties of thin films of polythiophene polymerized on basal plane platinum electrodes in nonaqueous media, J. Phys. Chem. B 113 (2009) 1899-(1905).
DOI: 10.1021/jp8089837
Google Scholar
[22]
M. Fu, G. Shi, F. Chen, X. Hong, Doping level change of polythiophene film during its electrochemical growth process, Phys. Chem. Chem. Phys. 4 (2002) 2685–2690.
DOI: 10.1039/b201041k
Google Scholar
[23]
A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Amer. Chem. Soc. 114 (1972) 10024-10035.
DOI: 10.1021/ja00051a040
Google Scholar
[24]
H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269-6271.
DOI: 10.1021/j100308a038
Google Scholar
[25]
J. Åquist, Ion-water interaction potentials derived from free energy perturnation simulations, J. Phys. Chem. 94 (1990) 8021-8024.
DOI: 10.1021/j100384a009
Google Scholar
[26]
S.I. Lee, J.C. Rasaiah, Molecular dynamics simulations of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25°C, J. Phys. Chem. 100 (1996) 1420-5.
DOI: 10.1021/jp953050c
Google Scholar
[27]
see, for example, A. Y. Toukmaji, J. A. Board Jr., Ewald summation techniques in perspective: a survey, Computer Physics Communications 95 (1996) 73–92.
DOI: 10.1016/0010-4655(96)00016-1
Google Scholar
[28]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburgh PA, (2003).
Google Scholar
[29]
K.C. Gross, P.G. Seybold, C.M. Hadad, Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols, Internat. J. Quantum Chemistry 90 (2002) 445.
DOI: 10.1002/qua.10108
Google Scholar
[30]
W. Smith, T. R. Forester, J. Molec. Graphics, 14 (1996) 136.
Google Scholar