Effect of Grain Boundary Geometry on Grain Rotation during Curvature-Driven Grain Shrinkage

Article Preview

Abstract:

Molecular dynamics simulations were performed to analyze the curvature-driven shrinkage of individual cylindrical grains with geometrically different boundaries in Al. Grains with <100> tilt and mixed tilt-twist boundaries with the misorientations 5.5°, 16.3°, and 22.6° were simulated. The results revealed that the shrinking grains with tilt boundaries concurrently rotate increasing the misorientation angles, whereas grains with the mixed boundaries did not rotate during their shrinkage. Apparently, the grain boundary geometry/structure has a crucial impact on the observed rotational behavior of the computed grains. The grains with tilt boundaries rotate due to the lack of effectively operating mechanisms for annihilation of edge dislocations, which compose such boundaries. In contrast, for the mixed boundaries composed of edge-screw dislocations the sufficiently fast operating mechanisms of dislocation elimination are available, which facilitates grain shrinkage without rotation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-81

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Margulies, G. Winther and H.F. Poulsen: Science Vol. 291 (2001), p.2392.

Google Scholar

[2] A. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S. Phillpot and H. Gleiter: Acta Mater. Vol. 51 (2003), p. (2097).

DOI: 10.1016/s1359-6454(03)00011-9

Google Scholar

[3] Y. Lin, H. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia: Metall. Mater. Trans. B Vol. 45 (2014), p.795.

Google Scholar

[4] J.C.M. Li: J. Appl. Phys. Vol. 33 (1962), p.2958.

Google Scholar

[5] D. Moldovan, D. Wolf, S. Phillpot and A.J. Haslam: Acta Mater. Vol. 50 (2002), p.3397.

Google Scholar

[6] K.E. Harris, V.V. Singh and A.H. King: Acta Mater. Vol. 46 (1998), p.2623.

Google Scholar

[7] L. Klinger and E. Rabkin: Acta Mater. Vol. 59 (2011), p.6691.

Google Scholar

[8] D.V. Bachurin, A.A. Nazarov and J. Weissmüller: Acta Mater. Vol. 60 (2012), p.7064.

Google Scholar

[9] Y. Ashkenazy, R.S. Averback and K. Albe: Phys. Rev. B Vol. 64 (2001), p.205409.

Google Scholar

[10] A.J. Haslam, S.R. Phillpot, D. Wolf, D. Moldovan and H. Gleiter: Mater. Sci. Eng. A Vol. 318 (2001), p.293.

Google Scholar

[11] M. Upmanyu, D.J. Srolovitz, A.E. Lobkovsky, J.A. Warren and W.C. Carter: Acta Mater. Vol. 54 (2006), p.1707.

DOI: 10.1016/j.actamat.2005.11.036

Google Scholar

[12] J.W. Cahn and J.E. Taylor: Acta Mater. Vol. 52 (2004), p.4887.

Google Scholar

[13] J.W. Cahn, Y. Mishin and A. Suzuki: Acta Mater. Vol. 54 (2006), p.4953.

Google Scholar

[14] J.W. Cahn, Y. Mishin and A. Suzuki: Philos. Mag. Vol. 86 (2006), p.3965.

Google Scholar

[15] V.A. Ivanov and Y. Mishin: Phys Rev B Vol. 78 (2008), p.064106.

Google Scholar

[16] D. Caillard, F. Mompiou and M. Legros: Acta Mater. Vol. 57 (2009), p.2390.

Google Scholar

[17] F. Mompiou, M. Legros and D. Caillard: Acta Mater. Vol. 58 (2010), p.3676.

Google Scholar

[18] H.A. Khater, A. Serra, R.C. Pond, J.P. Hirth: Acta Mater. Vol. 60 (2012), p. (2007).

Google Scholar

[19] A. Rajabzadeh, F. Mompiou, M. Legros and N. Combe: Phys. Rev. Letters Vol. 110 (2013), p.265507.

Google Scholar

[20] V. Taupin, L. Capolungo and C. Fressengeas: Int. J. Plast. Vol. 53 (2014), p.179.

Google Scholar

[21] D.A. Molodov, V.A. Ivanov and G. Gottstein: Acta Mater. Vol. 55 (2007), p.1843.

Google Scholar

[22] D.A. Molodov, T. Gorkaya and G. Gottstein: Mater. Sci. Forum Vols. 558-559 (2007), p.927.

Google Scholar

[23] T. Gorkaya, D.A. Molodov and G. Gottstein: Acta Mater. Vol. 57 (2009), p.5396.

Google Scholar

[24] T. Gorkaya, T. Burlet, D.A. Molodov and G. Gottstein: Scripta Mater. Vol. 63 (2010), p.633.

Google Scholar

[25] D.A. Molodov, T. Gorkaya and G. Gottstein: J. Mat. Sci. Vol. 46 (2011), p.4318.

Google Scholar

[26] D.A. Molodov, T. Gorkaya and G. Gottstein: Scripta Mater. Vol. 65 (2011), p.990.

Google Scholar

[27] A. Rajabzadeh, M. Legros, M. Combe, F. Mompiou and D.A. Molodov: Philos. Magazine Vol. 93 (2013), p.1299.

DOI: 10.1080/14786435.2012.760760

Google Scholar

[28] T. Gorkaya, K.D. Molodov, D.A. Molodov and G. Gottstein: Acta Mater. Vol. 59 (2011), p.5674.

DOI: 10.1016/j.actamat.2011.05.042

Google Scholar

[29] S.G. Srinivasan and J.W. Cahn: in: Science and technology of interfaces, edited by S. Ankem, C.S. Pande, I. Ovidko and R. Ranganathan, TMS, Seattle (2002), p.3–14.

Google Scholar

[30] Z.T. Trautt and Y. Mishin: Acta Mater. Vol. 60 (2012), p.2407.

Google Scholar

[31] Z.T. Trautt and Y. Mishin: Acta Mater. Vol. 65 (2014), p.19.

Google Scholar

[32] K.A. Wu and P.W. Voorhees: Acta Mater. Vol. 60 (2012), p.407.

Google Scholar

[33] F. Mompiou, M. Legros, T. Radetic, U. Dahmen, D.S. Gianola and K.J. Hemker: Acta Mater. Vol. 60 (2012), p.2209.

DOI: 10.1016/j.actamat.2011.12.013

Google Scholar

[34] S.E. Babcock and R.W. Balluffi: Acta Metall. Vol. 37 (1989), p.2367.

Google Scholar

[35] T. Radetic, C. Ophus, D.L. Olmsted, M. Asta and U. Dahmen: Acta Mater. Vol. 60 (2012), p.7051.

Google Scholar

[36] J. -E. Brandenburg, L.A. Barrales-Mora, D.A. Molodov and G. Gottstein: Scripta Mater. Vol. 68 (2013), p.980.

Google Scholar

[37] J. -E. Brandenburg, L.A. Barrales-Mora and D.A. Molodov: Acta Mater. Vol. 80 (2014), p.141.

Google Scholar

[38] S.J. Plimpton: Comput. Phys. Vol. 117 (1995), p.1.

Google Scholar

[39] B. -J. Lee and M.I. Baskes: Phys. Rev. B Vol. 62 (2000), p.8564.

Google Scholar

[40] B. -J. Lee, M.I. Baskes, H. Kim, Y.K. Cho: Phys. Rev. B Vol. 64 (2001), p.184102.

Google Scholar

[41] B. -J. Lee, J. -H. Shim and M.I. Baskes: Phys. Rev. B Vol. 68 (2003), p.144112.

Google Scholar

[42] D.M. Kirch, E. Jannot, L.A. Barrales-Mora, D.A. Molodov and G. Gottstein: Acta Mater. Vol. 56 (2008), p.4998.

DOI: 10.1016/j.actamat.2008.06.017

Google Scholar

[43] D.A. Molodov, U. Czubayko, G. Gottstein and L.S. Shvindlerman: Scripta Metall. Mater. Vol. 32 (1995), p.529.

Google Scholar

[44] G. Gottstein, D.A. Molodov, U. Czubayko and L.S. Shvindlerman: J. de Phys. IV Vol. 5 (1995), p.89.

Google Scholar

[45] D.A. Molodov, U. Czubayko, G. Gottstein and L.S. Shvindlerman: Acta Mater. Vol. 46 (1998), p.553.

Google Scholar

[46] T. Surholt, D.A. Molodov and Chr. Herzig: Acta Mater. Vol. 46 (1998), p.5345.

Google Scholar

[47] J.C. Verhasselt, G. Gottstein, D.A. Molodov and L.S. Shvindlerman: Acta Mater. Vol 47 (1999), p.887.

Google Scholar

[48] V.A. Ivanov, D.A. Molodov, L. S. Shvindlerman and G. Gottstein: Mater. Sci. Forum Vols. 467-470 (2004), p.751.

Google Scholar

[49] V.A. Ivanov, D.A. Molodov, LS. Shvindlerman and G. Gottstein: Acta Mater. Vol. 52 (2004), p.969.

Google Scholar

[50] D.M. Kirch, B. Zhao, D.A. Molodov and G. Gottstein: Scripta Mater. Vol. 56 (2007), p.939.

Google Scholar

[51] Ch. Günster, D.A. Molodov and G. Gottstein: Acta Mater. Vol. 61 (2013), p.2363.

Google Scholar